
Tandem Vicinal Difunctionalization: β -Addition to α , β -Unsaturated Carbonyl Substrates Followed by α -Functionalization

Marc J. Chapdelaine, ICI Pharmaceuticals Group, Division of ICI Americas, Inc., Wilmington, Delaware

Martin Hulce, University of Maryland, Baltimore County Campus, Baltimore, Maryland

1. Introduction

Vicinal difunctionalization reactions play an important role in modern synthetic organic chemistry. They provide access to complex structures in a stereocontrolled fashion and act as powerful, attractive, convergent elements in synthetic strategy. Consequently, examples of these reactions are numerous. (1) Among them may be cited the Diels–Alder reaction (Eq. 1), (2, 3) which results in vicinal dialkylation of a dienophile; epoxidation–functionalization of alkenes which results in 2-substituted alkanols (Eq. 2); (4) carbenoid additions to alkenes (Eq. 3) resulting in cyclopropanes; (5) organometalation–functionalization of alkynes (Eq. 4) (6) giving vicinally disubstituted alkenes, and the additions of alkyl halides (7) and acyl halides (8) to alkenes using Friedel–Crafts catalysts (Eq. 5). [2 + 2] Photocycloadditions (9, 10) and 1,3-dipolar cycloadditions (11) are but two of many more examples. New reactions are introduced regularly, such as radical cyclization–trapping, which recently has been applied to a synthesis of prostaglandin $F_{2\alpha}$. (12)

$$RC\equiv CH + R^1CuMgBr_2 + R^2I$$
 \longrightarrow R^1 \longrightarrow R^2 (4)

1.1. Definition of Tandem Vicinal Difunctionalization

Over the past 20 years, the process of tandem vicinal difunctionalization of α , β -unsaturated carbonyl substrates has been fully developed and extensively exploited. The tandem vicinal difunctionalization consists of two reactions, one enabling the other. An initial Michael (conjugate or 1,4) addition of a nucleophile, NuM, to the substrate 1 (the "Michael acceptor") under aprotic conditions transforms both the α and β carbons. The β carbon is further substituted and the α carbon takes on nucleophilicity as an enolate ion 2 (the "conjugate enolate," Scheme 1). The conjugate enolate ion subsequently may be trapped in situ using an appropriate electrophile, EX, thus derivatizing the α carbon. Conceptually, this can be envisaged as a vinylogous reaction. Through a "third-party" two-carbon extension, nucleophile and electrophile have reacted.

Scheme 1.

$$R^{1}$$
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{2}
 R^{3}
 R^{3

The enolate ion generated by the conjugate addition process, however, need not be α -functionalized in situ. As an ambident anion, it also may be isolated as a neutral species (4, an "enolate equivalent") by *O*-functionalization using an appropriate protecting agent, ZX, or by proton quenching. After isolation of this enolate equivalent 4, the enolate may be regenerated by some means and then functionalized at the α carbon to give the vicinally disubstituted product 3. Inasmuch as extensive chemistry can be performed on species of structure 4 before final α -functionalization, the scope of tandem vicinal difunctionalizations of α , β -unsaturated carbonyl compounds for this review includes only (a) conjugate additions to the substrate followed by α -carbon functionalization in situ, (b) generation of a neutral species via conjugate addition, then regeneration of the conjugate enolate followed by α -carbon functionalization, and (c) generation of a neutral species via conjugate addition, followed by a single chemical modification before regeneration of the conjugate enolate and subsequent α -carbon functionalization.

Often, the general reaction sequence may be named more specifically as a tandem vicinal dialkylation or dicarbacondensation, (13, 14) referring to the fact that many of the reactions that have been performed create two new vicinal carbon—carbon bonds. Noncarbon nucleophiles and electrophiles also have become popular, resulting in vicinal carbon—heteroatom bonds in the products of the reaction sequence; for this reason the broader appellation, tandem vicinal difunctionalization, is at times more appropriate.

1.2. History

Early investigations of the reaction between α , β -unsaturated ketones and Grignard reagents showed that a large excess of the Grignard reagent was necessary to prevent the formation of undesired, "secondary" products. The nature of such products was unclear. (15) Gradual recognition that the conjugate addition process led to an adduct enolate (e.g., 5), (16) which itself was capable of competing with the Grignard reagent for the α , β -unsaturated ketone substrate (6), allowed the conclusion that the secondary products were dimers (Scheme 2). (17) These products subsequently were identified by unambiguous synthesis.

Scheme 2.

$$C_{e}H_{5}CH=CHCOC_{e}H_{6}$$

$$C_{e}H_{5}CH=CHCOC_{e}H_{6}$$

$$C_{e}H_{5}CH=CHCOC_{e}H_{6}$$

$$C_{e}H_{5}CH=CHCOC_{e}H_{6}$$

$$C_{e}H_{5}CHCH=C(C_{e}H_{5})OMgBr$$

$$(C_{e}H_{5})_{2}CHCHCOC_{e}H_{6}$$

$$C_{e}H_{5}CHCH_{2}COC_{e}H_{6}$$

$$(C_{e}H_{5})_{2}CHCHCOC_{e}H_{6}$$

$$(C_{e}H_{5})_{2}CHCHCOC_{e}H_{6}$$

Realization of the potential synthetic utility (18, 19) of such observations and development of tandem vicinal difunctionalization as a general synthetic technique apparently was an equally slow process. In 1948, Warner (20) allowed acrolein to react with ethyl bromomalonate, presumably to obtain 4,4-diethoxycarbonyl-3-butenal via a 1,4 addition followed by dehydrohalogenation. Reexamination of the principal product clearly indicated that net cyclopropanation had occurred instead. By means of an S_N i reaction, the newly appended bromomalonate moiety had C-alkylated the conjugate enolate (Scheme 3).

Scheme 3.

Similarly, base-initiated dimerizations of 2-cyclohexenones, known to give crystalline solids, (21, 22) remained mechanistically puzzling for some time before sequential Michael addition was suggested to account for some of the possible products. (23) It was not until 1969 that dimerization of 4,4-dimethyl-2-cyclopentenone under basic conditions was reported and the product unambiguously identified. (24)

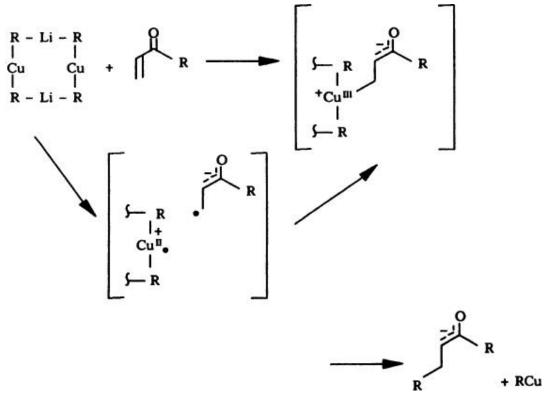
Stork, (25) while investigating new methods for the regiospecific generation of enolates,

reported that the dissolving metal conjugate reduction of α , β -unsaturated ketones produced enolates, which could be *C*-alkylated under suitable conditions. Soon the concept was extended to include the conjugate additions of nucleophiles, resulting in the first one-pot, 3-component tandem vicinal difunctionalization reaction, which was used as a key step in the total synthesis of lycopodine (Scheme 4). (26)

Scheme 4.

2. Mechanism

The overall reaction links two distinct bond-forming steps, both of which are well studied as to mechanism: a first step consisting of organometallic 1,4 addition to an α , β -unsaturated carbonyl substrate and a second step wherein the conjugate enolate is C-functionalized. It can be sketched along the lines of the process depicted in Scheme 5. Conceptually appealing and perhaps operationally adequate to predict product distributions from tandem vicinal difunctionalization reactions, this model belies the complexity of the steps of which it is composed.

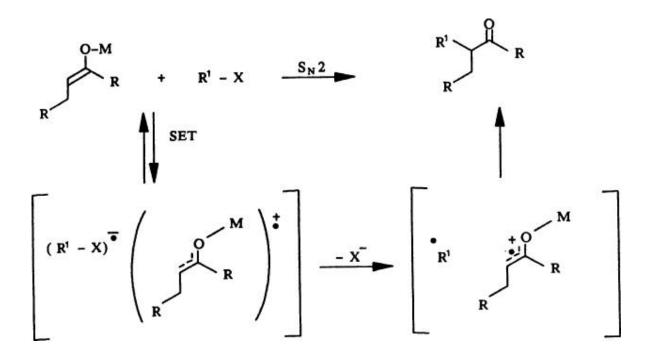

Scheme 5.

$$R^1 - M + R^2 + R^1$$
 $R^2 + MX$

2.1. Step One— β -Addition to α , β -Unsaturated Carbonyl Substrates

The precise mechanism of the conjugate addition reaction has been debated for some time, (27-32) and undoubtedly varies according to the nature of the attacking nucleophile. (33, 34) In the case of the most common organocopper nucleophiles, a detailed mechanism remains to be determined, (35-39) but there is general agreement on its fundamental aspects: (40) oxidative *trans* addition of a d (10) cuprate to the substrate producing a transient copper(III) (d^8) intermediate followed by reductive cis elimination generating the new chemical bond at the β carbon of the substrate and a conjugate enolate and copper(I) species (Scheme 6). Whether bond-forming occurs via direct nucleophilic oxidative addition, (41, 42) indirect single electron transfer—caged radical pair collapse, (43-48) or is preceded by copper(I)— π -bond coordination (49-53) continues to be investigated.

Scheme 6.



Mechanistic details of conjugate additions to α , β -unsaturated carbonyl substrates using less common, non-copper(II)-containing nucleophiles are not well determined. (54-56) Conjugate additions of Grignard reagents, for instance, appear to proceed by means of a single electron transfer mechanism; Michael additions of enolate anions may proceed by either single electron transfer or via an S_N2' -type process (*vide infra*).

2.2. Step Two—C-Functionalization of Enolates

The counterion of the enolate is predetermined (57) by the first step of the tandem vicinal difunctionalization and can profoundly influence the reactivity and ambident nature of the enolate, (58) but otherwise the second step of the reaction is well described as a substitution reaction of an enolate with an electrophile. It is mechanistically identical to the C-alkylation of regiospecifically generated enolates. (59) Recent research indicates that such additions may very well proceed by means of a single electron transfer mechanism, especially for electrophiles of lower reduction potentials (e.g., alkyl iodides); (60) electrophiles with higher reduction potentials (e.g., alkyl bromides) undergo bond formation based on the S_N2 process (Scheme 7). (61, 62)

Scheme 7.

3. Stereochemistry

The conjugate addition reaction is unusually sensitive to the steric environment of the Michael acceptor. The bond-forming process at the β carbon of the substrate, therefore, adheres rather rigidly to steric approach control factors in determining the relative stereochemistry of the newly formed bond in the conjugate enolate. Thus, the 5-methoxycarbonyl group of 5-methoxycarbonyl-2-cyclohexenone directs axial attack of a silylcopper(I) reagent so that the 3,5-trans-disubstituted adduct is produced (Eq. 6; hexamethylphosphorictriamide, HMPA). (63) The effect of smaller directing groups is essentially the same (Eq. 7). (64) Comparison of these two examples, however, indicates that subsequent α -functionalization may not proceed with a similar degree of stereoselectivity. The thermodynamically more stable *trans* products usually predominate, as would be predicted by both steric approach and product development control arguments. (65, 66) A complex combination of factors, including the nature of the conjugate enolate, the enolate counterion, the reaction conditions, and the nature of the electrophile, can make predictions

+
$$[CH_2=C(CH_3)CH_2]_2CuLi$$
 $\frac{1. -78^{\circ}}{2. (CH_3)_3SiCl}$ $CH_2=C(CH_3)CH_2$ (7) $\frac{1. LiNH_2, THF}{2. n-C_4H_9I}$ $CH_2=C(CH_3)CH_2$ (78%)

somewhat unreliable. For example, when 3-methyl-2-cyclopentenone is reacted with diphenylcopperlithium and the conjugate enolate methylated (Eq. 8; lithium diisopropylamide, LDA), the *cis* and not the *trans* product predominates, a consequence of lithium–arene π –coordination. (67) The sterically remote alkoxy moiety of α -bromoacetates influences the stereochemical product distributions of the difunctionalization reaction of 2-methyl-2-cyclopentenone (Eq. 9). (68) It is worthwhile to bear in mind that if the product of the overall reaction possesses a tertiary α carbon, equilibration can occur; this

+
$$(C_6H_5)_2CuLi$$
 $\frac{1. H_3O^+}{2. LDA}$ C_6H_5 (8)

3. CuCN, CH₃I, (68%)

HMPA trans: cis = 35:65

+ CH₂=CHMgBr
$$\frac{1. \text{ cat. CuI, THF}}{2. \text{ BrCH}_2\text{CO}_2\text{R}}$$
 CH₂CO₂R $\frac{1. \text{ cat. CuI, THF}}{2. \text{ BrCH}_2\text{CO}_2\text{R}}$ (9)

R = C₂H₅, trans: cis = 88:12

R = t -C₄H₉, >99% trans

process may or may not proceed at a rate sufficiently high to obscure the original stereochemical outcome of the initial α -functionalization of the conjugate enolate.

4. Scope and Limitations

4.1. Organocopper Reagents for β -Addition Followed by α -Functionalization

Nucleophilic organometallic 1,4 additions to α , β -unsaturated aldehydes, ketones, and esters have been and continue to be dominated by organocopper (Gilman) reagents, (69-71) largely because of the regioselectivity of these reagents for 1,4 versus 1,2 addition.

4.1.1.1. Catalytic Organocopper Reagents

Although the first example of a three-component tandem vicinal difunctionalization reaction was catalytic in organocopper [copper(I) chloride-catalyzed 1,4 addition of a Grignard reagent to 5,5-dimethyl-2-cyclohexenone (26)], these protocols (72) are not used widely when compared to stoichiometric organocopper reagents. The improvement in yield of the 1,4 adduct that is observed when stoichiometric organocopper reagents are utilized (e.g., Eq. 10; dimethyl sulfide, DMS) (73) most likely accounts for

$$CH_{3}M$$

$$CH_{3}M = CH_{3}MgCl + 10 \text{ mol } \% \text{ CuBr } \bullet \text{ DMS } (15\%)$$

$$CH_{3}M = (CH_{3})_{2}CuMgCl \ (25\%)$$

the preference. Nonetheless, conjugate additions catalyzed by copper(I) reagents can be highly successful. Typically, the organometallic reagent employed as the nucleophile is a Grignard reagent; the copper(I) halides, usually copper(I) iodide, copper(I) bromide, or their dimethyl sulfide or trialkylphosphine complexes, are present in amounts ranging from 2 to 10 mole percent (Eqs. 11 (74) and 12 (75)). Successful tandem vicinal dialkylations employing 1 mole percent of tris(tri-*n*-butylphosphino)copper(I) iodide have been reported (Eq. 13), (76) as have those using 25–30 mole percent of copper(I) bromide dimethyl sulfide complex as catalyst (Eq. 14). (77)

1. 1% CuI •
$$(n - C_4 H_0)_3 P$$
,
 $CH_3 MgBr, -78^{\circ}$
2. $H_2 CO, -10^{\circ}$
(13)

Explicit mention of the use of copper(II) catalysts is made rarely; conjugate addition of a methylmagnesium halide to steroid 7, catalyzed by copper(II) acetate followed by α -methylation, gives steroid 8 in good yield (Eq. 15). (78)

The specific identity of the catalytically active organocopper species generated in situ during the reaction can have a critical effect on its outcome. Copper(I) halides complexed with solubilizing ligands are preferred because of added stability and ease of purification. Grignard reagents appear to perform more efficiently in copper(I)-catalyzed 1,4 additions than the analogous alkyllithium reagents.

The ability to α -functionalize the conjugate enolate of copper(I) cyanide-catalyzed 1,4 addition to 4,4-dimethyl-2-cyclohexenone is determined by a combination of solvent (diethyl ether) and organomagnesium nucleophile (an alkylmagnesium iodide) (Eq. 16). (79) Use of tetrahydrofuran as solvent or an alkylmagnesium chloride instead of the analogous iodide leads exclusively to O-alkylation of the conjugate enolate. Copper(I) catalysis is imperative in

this case! Use of a stoichiometric dialkylcoppermagnesium halide for conjugate addition gives solely *O*-alkylation of the conjugate enolate.

Activation of the α , β -unsaturated carbonyl substrate by an additional electron-withdrawing group on the α carbon sometimes renders copper(I) catalysis superfluous (Eq. 17). (80)

$$CO_2CH_3$$
 RM CO_2CH_3 CO_2

Lewis acids promote 1,4 addition to substrates that are sluggish or nonreactive to copper(I) catalysis alone; (81) methylenecyclohexane annulation of 2-cycloalkenones proceeds in reasonable yields when one equivalent of boron trifluoride etherate is used in addition to copper(I) bromide (Eq. 18). (82)

4.1.1.2. Stoichiometric Organocopper Reagents

A variety of organocopper reagents have found use as efficient nucleophiles to initiate tandem vicinal difunctionalizations of α , β -unsaturated carbonyl substrates, in spite of the fact that one type of organocopper compound may display chemical behavior very different from that of another. Organocopper reagents that begin successful difunctionalization sequences by conjugate addition include: the alkylcopper(I) reagents 9 and 10, with and without ligating agents that may be essential to their reactivity; dialkylcopper(I) metal reagents 11, typically generated from Grignard or organolithium reagents and often

referred to as homocuprates; dialkylcopper(I) metal reagents 12, generated similarly and referred to as mixed homocuprates, and alkyl(alkylhetero)copper(I) metal reagents 13, usually prepared from an alkyl metal and the appropriate copper(I) salt and referred to as heterocuprates. The promising "higher-order" complex organocopper reagents (83) so far have proven to be unsuitable for use in direct intermolecular tandem difunctionalization reactions (84, 85) but can be applied via a conjugate enolate trapping–enolate regeneration indirect sequence (86) (Eq. 19). Intramolecular alkylation of conjugate enolates occurs upon the addition of cyanodialkylcopper(I) dilithium reagents to α , β -unsaturated esters. (87) Undoubtedly, these reagents will be further utilized in difunctionalization schemes.

4.1.1.3.1. Organocopper(I) Reagents

Simple organocopper reagents are almost always less reactive than the corresponding cuprates. This order of reactivity allows the execution of highly successful tandem vicinal dialkylations with cuprate reagents. The conjugate enolate is sufficiently more reactive than the organocopper byproduct so that competition between the two for the α -functionalizing electrophile normally is not significant. A comparative lack of reactivity in conjugate addition reactions explains the rare use of them as Michael donors in vicinal difunctionalization. Vinylcopper reacts with 2-methyl-2-cyclopentenone in a 1,4 fashion (Eq. 20), (88) but most organocoppers are inert. The relative insolubility of organocopper reagents in diethyl ether or tetrahydrofuran (THF), the typical solvents used for the conjugation addition—enolate alkylation sequence, most certainly contributes to their inertness; methylcopper, for instance, is an insoluble polymer in either solvent.

Solubilization via ligation with organophosphorus or organosulfur ligands clearly activates the organocopper reagents toward conjugate addition. Pioneering work has led to the popularization of trialkylphosphines as ligands (Eq. 21); (89) other activating reagents include trialkyl phosphites (Eq. 22), (90)

boron trifluoride (Eq. 23), (91, 92) and dimethyl sulfide (DMS; Eq. 24). (93) There is clear advantage in using solubilized organocopper reagents instead of homocuprate reagents when the organometallic precursor is particularly valuable. Only one equivalent of the precursor is necessary to generate one equivalent of the copper species; for one equivalent of homocuprate reagent, two equivalents of the precursor are required. Occasionally, large quantities of solubilizing

1.
$$[(n-C_4H_9)_3P] \bullet Cu$$

$$C_5H_{11}-n$$

$$OSi(CH_3)_2C_4H_9-t$$
2. $HMPA$, $(C_6H_6)_3SnCl$
3. CO_2CH_3

$$CO_2CH_3$$

2
$$CH_3O_2CC \equiv CCO_2CH_3$$

$$C_2H_5Cu \bullet DMS$$

$$C_2H_5$$

$$C_2H_5$$

$$C_2H_5$$

$$C_2H_5$$

$$CH_3O_2C$$

$$CO_2CH_3$$

$$CH_3O_2C$$

$$CO_2CH_3$$

ligand must be used, which causes difficulty in the separation of the products from the reaction mixture; this is frequently observed with trialkylphosphine ligands. Recent studies indicate that organocopper reagents function not only as Michael donor carbanionic synthons but can be extended to function as tin-based anionic synthons as well (Eq. 25). (94, 95)

CH3CECCON(CH3),

4.1.1.3.2. Homocuprate Reagents

Homocuprate reagents remain the most popular Michael donors for tandem vicinal difunctionalizations of α , β -unsaturated carbonyl substrates and probably should be considered the reagents of choice for initial investigations of the applicability of the method to a synthesis. Research efforts that began in the mid-1960s on enolates derived from lithium dimethylcuprate 1,4 addition to acetylenic esters demonstrated the variety of manifolds available to the reactive species: oxidative dimerization, oxidative coupling with dimethylcopperlithium (Eq. 26), (96) and alkylation with methyl iodide (Eq. 27). (97)

$$C_2H_5C \equiv CCO_2CH_3$$
 1. $(CH_3)_2CuLi$ C_2H_5 CO_2CH_3 C_2H_5 (27)

The metal of the dialkylcoppermetal reagent is chosen based upon the convenience of the preparation of the prerequisite alkylmetal and is invariably lithium or a magnesium halide. It has *not* been demonstrated, however, that the efficiency of the reaction sequence is independent of the nature of the metal. (29, 70) The alkyl group to be added to the α , β -unsaturated carbonyl substrate may be methyl, primary or secondary alkyl, alkenyl, allyl, benzyl, or

aryl. No difunctionalization reactions using tertiary dialkylcoppermetal reagents have been reported. (98) Occasionally, these reagents bear additional and even complex functionality. Homocuprate 14, containing an ethylene acetal moiety, is the Michael donor in a conjugate addition—intramolecular cyclization reaction of acetylenic esters (Eq. 28); (99) bis[(*E*)-trimethylsilylethenyl]coppermagnesium bromide

is the β -alkylating agent in a difunctionalization reaction of 2-methyl-2-cyclopentenone (Eq. 29); (100) addition of cuprate (*R*)-15 to 2-methyl-2-cyclopentenone proceeds with asymmetric induction at the β carbon (Eq. 30) (101) to give (2*S*,3*S*)-16. Organosilicon homocuprates

serve as excellent Michael donors (Eq. 31), (102) allowing for reintroduction of unsaturation between the α and β carbons of the carbonyl substrate at a later point in a synthesis via Peterson olefination.

$$C_{6}H_{5}$$
 $C_{6}H_{5}$
 $C_{6}H_{5}$

Solubilizing ligands and activating Lewis acids can be used to facilitate difunctionalization reactions using homocuprates, although typically they do not appear to be essential for the reaction to succeed. The ligands simply may be dictated by the desire to use a copper(II)-free source of copper(I) halide that has been purified as its trialkylphosphine or dimethyl sulfide complex (e.g., Eq. 32; 2-tetrahydropyranyl, THP), (103) while in other cases additional ligand is required (Eq. 33). (104) Enhanced yields can result by using boron trifluoride etherate

as an activating catalyst for conjugate addition (Eq. 34). (105) Although still untried, the recent observation (52, 106) that trimethylsilyl chloride-modified homocuprates enhance the chemical yields of conjugate additions to α , β -unsaturated ketones should find application in tandem vicinal difunctionalizations via enol ether intermediates.

$$\begin{array}{c} H \\ \hline \\ H \\ \hline \\ H \\ \end{array} \begin{array}{c} [CH_2=C(CH_2CH_2CI)]_2CuLi \\ \hline \\ BF_3\bullet(C_2H_6)_2O \\ \hline \\ H \\ \end{array} \begin{array}{c} CI \\ \hline \\ H \\ \end{array} \begin{array}{c} H \\ \hline \\ H \\ \end{array} \begin{array}{c} KH \\ \hline \\ H \\ \end{array} \begin{array}{c} H \\ \hline \\ H \\ \end{array} \begin{array}{c} H \\ \hline \\ \end{array} \begin{array}{c} (34) \\ \hline \end{array}$$

4.1.1.3.3. Mixed Homocuprate Reagents

Unsymmetrical diorganocoppermetal reagents 12 possess two chemically distinct alkyl moieties, only one of which functions as a nucleophile. The two groups usually differ in their formal hybridizations of the carbon atoms bonded to the copper nucleus, and almost invariably the group whose carbon—copper

bond contains the lesser s-character is transferred to the electrophile, while that with the greater s-character is retained. (107) Selectivity of transfer to the electrophile usually is exclusive, and none of the organocopper byproduct is seen to act as a nucleophile. A few exceptions to these generalizations point to the subtle nature of these species: methylvinylcopperlithium preferentially transfers its vinyl moiety in a 1,4 addition reaction with 2-cyclopentenone (Eq. 35), but the selectivity of transfer is solvent-dependent; (108) cuprate 17 transfers its phenyl group exclusively in a trimerization reaction of methyl crotonate (Eq. 36). (109)

$$\frac{1. \text{ CH}_2 = \text{CHCu(CH}_3)\text{Li, THF, } -78^{\circ}}{2. \text{ CH}_2 = \text{CHCH}_2 \text{Br}}$$
(35)

3 (E)-CH₃CH=CHCO₂CH₃ +
$$Cu(C_6H_6)Li$$

17

 C_6H_5 CO₂CH₃ (36)

 CO_2CH_3 (38%)

Mixed homocuprates typically are generated from an alkynylcopper and one equivalent of an alkyllithium reagent, although occasionally some other sp-hybridized group, such as the cyano group, (110) is used. Among the alkynylcoppers, pentynyl- and hexynylcopper are used most frequently and can be prepared and stored (111) or generated in situ by the addition of an alkynyllithium to a slurry of copper(I) iodide. The 1:1 nucleophile-to-electrophile stoichiometry of the reagents, when compared to the 2:1 stoichiometry of the homocuprates, has made them the preferred reagents in β -chain nucleophilic addition for tandem vicinal difunctionalizations that yield prostanoids (Eq. 37). (112) Alkylalkynylcoppermetal reagents are usually much less reactive than the corresponding homocuprate reagents. (107)

$$1. \frac{n-C_{8}H_{11}}{OSi(CH_{3})_{2}C_{4}H_{9}-t} - \frac{Cu(C \equiv CC_{3}H_{7}-n)Li}{2. ClCO(CH_{2})_{5}CO_{2}CH_{3}}$$

$$t-C_{4}H_{9}(CH_{3})_{2}SiO \qquad CO(CH_{2})_{5}CO_{2}CH_{3}$$

$$t-C_{4}H_{9}(CH_{3})_{2}SiO \qquad CO(CH_{3})_{2}C_{4}H_{9}-t$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

$$(37)$$

The choice of lithium as counterion versus that of a magnesium halide can have multiple effects. The naphthylcopperlithium reagent **18a** initiates tandem dialkylation of 2-methyl-2-cyclopentenone in 57% yield, (113) whereas use of the corresponding Grignard-derived organocopper reagent **18b** results in a greater amount of β -alkylation, but no net dialkylation, (114) with α -bromoacetates as electrophiles (Eq. 38). The corresponding homocuprate of **18b** fails to undergo conjugate addition with the substrate enone altogether; use of the mixed homocuprate is essential for success of the synthesis.

Mixed homocuprate 19 functions as a novel methyl acrylate synthetic equivalent which undergoes vicinal dialkylation in the reverse order: α -bond formation proceeds by means of organocopper addition to an acid halide 20,

generating an equivalent of methylcopper which then undergoes facile β addition to the highly activated β -keto ester that has been formed in situ (Eq. 39). (110) Introduction of α , β -unsaturation is possible by reversing the order of vicinal dialkylation and starting with ethyl propiolate (Eq. 40). (110)

HCECCO₂C₂H₅ +
$$n$$
-C₃H₇CECCu(CH₃)Li
$$\frac{1.(C_2H_5)_2O}{2. 20}$$

$$(40)$$

4.1.1.3.4. Heterocuprate Reagents

Much like mixed homocuprates, alkyl(alkylhetero)coppermetal reagents 13 possess only one moiety that acts as a nucleophile. Typically, only the carbon—copper bonded portion is transferred to the electrophile while the heteroatom—copper bonded portion is retained. As a class, the reagents are thermally unstable (115) and must be used at low temperatures; however, they usually are as reactive as the corresponding homocuprate reagents. Reactive, thermally stable heterocuprates have been designed and prepared, (116, 117) but so far have not been used in tandem vicinal functionalization reactions.

The most common heterocuprate reagents incorporate the phenylthio group and are available by simple treatment of phenylthiocopper with an alkyllithium reagent at low temperature. Some limited use of alkyl(*tert*-butoxy)-copperlithium reagents made from copper(I) iodide and sequential addition of lithium *tert*-butoxide and an alkyllithium reagent also has been reported. n-Butyl(tert-butoxy)copperlithium initiates α , β -dialkylation of 2-cyclohexenone, but is not as efficient a reagent as the simple homocuprate (Eq. 41), (118)

$$\frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ CH}_{3}\text{I, HMPA}} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ CH}_{3}\text{I, HMPA}} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ CH}_{3}\text{I, HMPA}} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ CH}_{3}\text{I, HMPA}} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ RCu(R')Li, THF, } -78^{\circ}}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ C4H}_{9}-n}{2. \text{ C4H}_{9}-n} + \frac{1. \text{ C4H}_{9}-n}{$$

promoting facile equilibration of the conjugate enolate. The heterocuprate does, however, enhance the degree of net *trans* dialkylation of the enone. In comparison of ability to difunctionalize 2-cyclopentenone, neither phenylthio nor pentynyl cuprates offers particular advantage (Eq. 42). (119) A similar

conclusion can be drawn concerning the effectiveness of phenylthio vs. cyano cuprates in the β -alkylation–intramolecular α -alkylation of a variety of 2-cycloalkenones (Eq. 43). (120)

$$R = H, R'=CN (77\%) R = H (68\%) R = CH_3, R'=SC_6H_5 (77\%) R = CH_3 (75\%)$$

Cyclopropyl(phenylthio)copperlithium reagents are exceptionally useful in a conjugate addition–elimination reaction, followed by α -alkylation via a thermal Cope rearrangement (Eq. 44). (121) An unusual instance of transfer of

the heteroatom-containing moiety of heterocuprate **21** is illustrated in the conjugate trimethylstannylation of ethyl 2-butynoate (Eq. 45), in which **21** is as effective as the corresponding trimethylstannylcopper reagent. (94)

$$CH_{3}C \equiv CCO_{2}C_{2}H_{6} + 2CH_{3}OC(CH_{3})_{2}C \equiv CCu[Sn(CH_{3})_{3}]Li \xrightarrow{THF} -48^{\circ}$$

$$CO_{2}C_{2}H_{6} = \frac{1. CH_{3}Li, THF, -98^{\circ}}{2. CH_{3}I, -98 \text{ to } 78^{\circ}}$$

$$Sn(CH_{3})_{3} = \frac{CO_{2}C_{2}H_{6}}{2. CH_{3}I, -98 \text{ to } 78^{\circ}}$$

$$Sn(CH_{3})_{3} = \frac{CO_{2}C_{2}H_{6}}{2. CH_{3}I, -98 \text{ to } 78^{\circ}}$$

$$Sn(CH_{3})_{3} = \frac{CO_{2}C_{2}H_{6}}{2. CH_{3}I, -98 \text{ to } 78^{\circ}}$$

$$Sn(CH_{3})_{3} = \frac{CO_{2}C_{2}H_{6}}{2. CH_{3}I, -98 \text{ to } 78^{\circ}}$$

4.1.1.4. Effect of Variation of the R Group Transferred on α -Functionalization Trans difunctionalization of α , β -unsaturated carbonyl substrates predominates in nearly all cases and is relatively independent of the size or hybridization state of the nucleophile undergoing 1,4 addition to the substrate. When heteroatom-containing functional groups are present in the Michael

donor, subsequent chelation or coordination may determine the solution structure of the conjugate enolate. Cases where this type of influence on α -functionalization has been observed are rare. The high level of *trans* diastereoselectivity noted (102) when methyl *trans*-crotonate is reacted with phenyldimethylsilylcopperlithium, followed by methyl iodide (Eq. 46), can be envisioned as arising from one of two routes. The conjugate enolate may be chelated to the silyl moiety 22, the methyl iodide approaching the less hindered face of the cyclic intermediate. Alternatively, the stereoelectronic influences of the lower-energy conformation of the conjugate enolate 23 may direct the electrophile to attach *anti* to the silyl group. Evidence points to the latter; the silyl group does not appear to perturb normal conjugate enolate behavior toward electrophiles. The previously mentioned lithium—arene π -coordination

$$\frac{1. \left[C_{8}H_{5}(CH_{3})_{2}Si\right]_{2}CuLi}{2. CH_{3}I}$$

$$C_{6}H_{5}(CH_{3})_{2}Si$$

$$C_{6}H_{5}(CH_{3})_{2}Si$$
(82%)

erythro:threo = 99:1

of the conjugate enolate from addition of diphenylcopperlithium to cyclopentenones (Eq. 8) directs \emph{cis} - α -functionalization. The effect is weak; 2-substituted

cyclopentenones disrupt the coordination, as do cyclohexenones, and the *trans*-dialkylated products predominate. (67)

4.2. Other Reagents

4.2.1.1. Stabilized Reagents

Carbanionic nucleophiles can be made into effective reagents for conjugate addition reactions by "softening" their Lewis base characteristics. Appending resonance and/or inductive stabilizing groups to carbanions renders them excellent Michael donors.

4.2.1.1.1. Enolate Reagents

Although often used as a generic descriptor for 1,4 or conjugate addition, Michael addition refers to the observed 1,4 addition of an enolate anion to an α , β -unsaturated carbonyl substrate resulting in a 1,5-dione. (122) The reaction is tightly linked to tandem vicinal difunctionalization, being responsible for the "secondary" products of Grignard reactions and the first examples of the difunctionalization sequence, as previously discussed. Classical Michael addition reactions are conducted in protic media. To compete effectively with proton capture for the enolate, the α -functionalizing reagent needs to be intramolecular in nature (Eq. 47); (123) alternatively, the Michael adduct can be isolated and α -functionalized under a different set of

reaction conditions, for example, an acid-catalyzed aldol reaction (Eq. 48) (124) or alkylation of a regiospecifically generated conjugate enolate (Eq. 49; 1,2-dimethoxyethane, DME). (125)

Enolate-based tandem vicinal difunctionalization in protic solvents suffers from the typical disadvantages of self-condensation (which occasionally may be of use), (126) side reactions of the bases (usually alkoxides) used to catalyze the reactions, and "retro-Michael" reactions that occur at elevated temperatures due to the reversibility of the reaction. Not surprisingly, conjugate-addition—alkylation

$$SC_{e}H_{5} + (CH_{3}O_{2}C)_{2}CH_{2} \xrightarrow{1. \text{ NaOCH}_{3}, CH_{3}OH} SC_{e}H_{5}$$

$$CO_{2}CH_{3}$$

$$1. \text{ NaH, DME}$$

$$2. C_{2}H_{5}CECCH_{2}Br$$

$$CEC$$

$$CO_{2}CH_{3}$$

$$CEC$$

sequences in aprotic media have supplanted the Michael reaction.

A prototype reaction demonstrates the ease with which difunctionalization occurs at low temperature: 2-cyclopentenone undergoes 1,4 addition by an ester enolate; the conjugate enolate then is trapped with allyl bromide (Eq. 50). (127) Intramolecular trapping of conjugate enolates also is possible, resulting in cyclization reactions often referred to as MIchael Ring Closure or MIRC (128) reactions (Eq. 51). (129) The most efficient ester enolates possess α -heteroatom substituents, examples of which include arylthio, alkylthio, halo, methyldiphenylsilyl, arylsulfonyl, (130) and alkoxy groups. The Michael donor need not

$$(E)-I(CH_2)_4CH=CHCO_2C_2H_5 + Li CO_2C_4H_9-t$$

$$\frac{1. \text{ THF, } -78^{\circ}}{2. \text{ } t-C_4H_9OK} CO_2C_2H_5$$

$$(94\%)$$

be generated directly from an ester and a hindered non-nucleophilic base, but

can be generated instead from an enolate equivalent, the most popular being a silyl enol ether. Methyllithium, (4) fluoride-mediated, (131, 132) or trityl perchlorate-catalyzed (133, 134) enol ether cleavages are effective methods for Michael donor formation in tandem vicinal difunctionalizations and in some cases may produce better yields of desired products.

An interesting modification of the Michael-addition– α -functionalization reaction involves the use of a second Michael acceptor as the electrophilic reagent for α -functionalization of the conjugate enolate. Ketone 24, by way of example, undergoes conjugate addition of the lithium enolate of methyl 2-methylpropanoate; the resultant conjugate enolate then is C-methylated using methyl iodide to provide the ketone 25 (Scheme 8). (135) When methyl acrylate is substituted for methyl iodide, α -functionalization generates a new ester enolate, 26, with net tandem vicinal difunctionalization of substrate 24. The new enolate now undergoes yet a third conjugate addition reaction with the 2-phenyl-2-cyclopentenone moiety still present in the molecule from the original substrate 24, forming norbornanone 27 in 40% overall yield, or in 74% chemical yield per carbon-carbon bond formed in the reaction. (136) One-pot, three carbon-carbon bond-forming, two-component double tandem vicinal difunctionalization reactions with subsequent ring closure belong to a class of reactions called MIchael-MIchael Ring Closure (MIMIRC) or Sequential MIchael Ring Closure (SMIRC) reactions. (137) These controlled anionic codimerization and cotrimerization reactions can proceed in high yields and with excellent control of stereochemistry, generating complex polycyclic structures.

Scheme 8.

Most MIRC and MIMIRC reaction sequences are initiated by ketone enolates, as opposed to ester enolates. The kinetic enolate of 2-cyclohexenone undergoes 1,4 addition with methyl acrylate; the conjugate enolate then performs a second intramolecular Michael addition with concomitant ring formation to yield the bornanone ring system (Eq. 52). (138, 139) An intramolecular version, where both initial Michael donor and acceptor are contained in the

same molecule, has been reported; (140) two carbon–carbon bonds and two rings are formed with complete control of stereochemistry (Eq. 53; lithium hexamethyldisilazide, LiHMDS).

Both inter- and intramolecular cyclopropanation reactions are possible using MIMIRC methodology: a malonate-initiated dimerization of methyl α -bromoacrylate affords the cyclopropane **28** (Eq. 54); (141) the tricyclo[2.1.1.0]-octane ring system is produced in the reaction of phenyl vinyl sulfone with the kinetic enolate of isophorone (Eq. 55) (142) The production of spiro compounds also is possible (Eq. 56). (143) A recent synthesis of epiflavinine uses a cascade of sequential Michael reactions, ketalization, and esterification all in

an intramolecular sense to afford the complex polycyclic system **29** (Eq. 57). (144) The MIMIRC methodology affords the advantages of convergence and stereocontrol, boding well for its application in total synthesis.

4.2.1.1.2. Sulfur-Stabilized Reagents

Mercaptide anions are good Michael donors in tandem vicinal difunctionalization reactions. Esters and ketones undergo tandem phenylthiolate conjugate addition—aldol reactions (145) to give β -phenylthio- β -hydroxy esters and ketones (Eq. 58). A fully formed thiophenoxide salt may be used as the initial nucleophilic reagent, or the reaction may be performed with base catalysis. (146) Mercaptides have found particular use in investigations of the scope of MIRC-type reactions. The α -alkylating fragment

for the reaction sequence can be part of the Michael acceptor (Eq. 59) (147) or part of the Michael donor (Eq. 60; dimethyl sulfoxide, DMSO). (148) The latter

$$CONH_{2} + C_{8}H_{5}SH \qquad NaH, t-C_{4}H_{9}OH \qquad CONH_{2}$$

$$C_{8}H_{5}S \qquad (>99\%)$$

$$CH_{2}=CHCO_{2}CH_{3} + NaSCH_{2}CO_{2}CH_{3} \qquad DMSO \qquad (60)$$

(77%)

approach recently has been used in a synthesis of regiospecifically substituted thiophenes from allene diesters (Eq. 61). (149)

$$C_2H_5O_2CCH=C=CHCO_2C_2H_5$$
 + HSCH(CH₃)CO₂CH₃

$$CO_2C_2H_5$$

$$CO_2C_2H_5$$
(61)

The stabilizing effect of a sulfur atom upon an adjacent carbanionic center permits the straightforward synthesis of 4-alkylthioketones by means of tandem difunctionalization. Ambident allylic anions react so that

carbon–carbon bond formation occurs exclusively (150) from the α carbon (Eq. 62). (151) Arylsulfinyl (152) and arylsulfonyl (153) groups behave in similar fashion and in all cases yields of the conjugate enolates normally are good. In contrast, an example of an arylsulfinyl-stabilized allylic anion that undergoes exclusive carbon–carbon bond formation with 2-cyclopentenone from its γ carbon recently has been described. (154) This regiospecific mode of addition also is exhibited by an analogous diphenylphosphinyl-stabilized allylic anion. (155) Stabilization via sulfur

also finds synthetic utility in the formation of vinylic anions that will function as Michael donors. In a total synthesis of (\pm)-methylenomycin A, (156) the regiospecifically metalated methacrylate 30 undergoes a conjugate addition reaction with methyl acrylate; α -functionalization by Dieckmann cyclization results in formation of cyclopentenone 31 (Eq. 63).

It is possible to develop reagents wherein the stabilizing organosulfur substituent serves a dual role. Metalation of trimethylsilylmethyltrimethylsulfonium iodide provides an ylide that undergoes

conjugate addition to enones. The trimethylsulfonium moiety then functions as a leaving group when intramolecular attack of the conjugate enolate occurs, resulting in net cyclopropanation (Eq. 64). (157)

Dialkylthiomethanes act as acyl anion equivalents when used in a tandem vicinal difunctionalization and can provide entry into substituted 1,4-diketones. Lithiated dithianes undergo conjugate addition—aldol condensations with *N,N*-dimethylcrotonamides with considerable stereoselectivity (Eq. 65). (158) A number of lignan antibiotics such as (±)-podorhizol (159) have thereby

been prepared in a highly convergent manner using similar strategies (160-163) (Eq. 66).

Ambident dithianylidene anions act as Michael donors for conjugate additions to enones. An α -1,4 or γ -1,4 addition mode may be achieved by altering the

counterion (Li⁺ vs. Cu⁺) or by use of HMPA as a solvent adjuvant (Eq. 67). (164) Either of the sulfur atoms in a dialkylthiomethane reagent can be oxidized; the resultant alkylthiomethyl sulfoxides (165) and sulfones (166) also

are efficient Michael donors. The sodium salt of methylthiomethyl p-toluyl sulfone initiates a MIMIRC-type reaction with two molecules of acrylate, resulting in the synthesis of a β -ketoester (Eq. 68).

Orthothioformates (167, 168) and their analogs (169) have been used only recently in tandem difunctionalization strategies. In a particularly interesting example, the nucleophilic carbon atom of triphenylthiomethyllithium undergoes umpolung in situ after conjugate addition to 2-cyclohexenone, functioning as the α -alkylating agent of the conjugate enolate in a MIRC-type cyclopropanation (Eq. 69). (167)

4.2.1.1.3. Phosphorus Ylide Reagents

Like the sulfonium ylides previously discussed (Eq. 64), phosphonium ylides can be employed as cyclopropanating reagents for unsaturated ketones and esters by means of β -conjugate addition— α -intramolecular alkylation. (170-172) Even hindered ylides undergo the reaction; the ylide generated from isopropyltriphenylphosphonium halide undergoes reaction with α , β -unsaturated esters to yield \emph{gem} -dimethylcyclopropanes (Eq. 70). (173) Intramolecular cyclopropanation is observed when a

$$n-C_4H_9$$
 + $i-C_3H_7P(C_6H_5)_3$ THF $n-C_4H_9$ CO₂CH₃ (70%)

phosphonium ylide is generated during a MIMIRC sequence (Eq. 55). Commonly used for this purpose are phosphonium salts bearing a vinyl substituent, including vinyltriphenylphosphonium bromide (VTB, Schweitzer's reagent) (174, 175) and isopropenyltriphenylphosphonium bromide (ITB, Eq. 71). (176)

4.2.1.1.4. Nitroalkanes

Nitroalkanes also can serve as cyclopropanating reagents for α , β -unsaturated esters that are activated for Michael additions by α -substitution with an electron-withdrawing group. (177, 178) Similar to the phosphorus ylide employed in Eq. 70, 2-nitropropane functions as a Michael donor– α -alkylating agent for an α , β -unsaturated α -cyanoester in protic solvents using potassium carbonate as base to give $\it gem$ -dimethylcyclopropanes in good yields and singular stereochemistry. (177) 1-Nitroalkenes act as superior VTB-like equivalents in MIMIRC reactions; isolated yields of the products typically are high (Eq. 72). (179) Nitromethane adds to β -ketoamide 32. Subsequent

intramolecular alkylation occurs in only one of two possible fashions; no cyclopropane is produced, and only cyclopentane **33** is observed (Eq. 73). (147)

In a MIRC-type sequence using 5-nitro-2-pentanone as a Michael donor to 2-cyclopentenone, no cyclopropane products are noted, and normal ring closure via an aldol reaction results in the expected cyclohexane. (180)

4.2.1.1.5. Other Reagents

The cyanide anion, both in protic (147) and aprotic (181, 182) solvents, can be used in MIRC-type reactions. Benzylic anions stabilized by the cyano group are excellent Michael donors (183-185) and, like their enolate anion equivalents, provide the opportunity for further elaboration of the 1,5-difunctional product from the tandem difunctionalization reaction. (186, 187) The reagent p-toluenesulfonylacetonitrile serves three purposes in the preparation of a bicyclo[3.1.0]hexanone 34; it is a double Michael donor to a divinylketone to form a cyclohexanone; γ -elimination of the sulfonyl moiety then establishes the ring fusion (Eq. 74). (188)

Silyllithium reagents and trimethylsilyl-stabilized benzylic anions (189) can serve as Michael donors. Trimethylsilyllithium is an excellent Michael donor to 2-cyclohexenone: (55) as such, it may have implications to the mechanistic details of the tandem difunctionalization sequence.

4.2.1.2. Unstabilized Reagents

Organometallic reagents that are Lewis bases can be used directly or with a transition metal catalyst to perform conjugate additions, particularly when the unsaturated carbonyl substrate is relatively activated by means of an electron-withdrawing α substituent. Anionic reagents other than carbanions have found application; these include anions of oxygen, nitrogen, selenium, and tin.

4.2.1.2.1. Organomagnesium Reagents

The historic significance of Grignard reagents in the development of the tandem vicinal difunctionalization of α , β -unsaturated carbonyl compounds has been mentioned. Rarely, Grignard reagents may initiate useful MIMIRC-type dimerizations of enones (Eq. 75), (19)

or can act as Michael donors to give dialkylation products (78) with unactivated enones. Typically, Michael acceptors that demonstrate affinity for 1,4 additions with unstabilized reagents are chosen in order to obtain good chemical yields of the desired products. Such acceptors include amides (Eq. 76), (190)

thioamides (Eq. 77), (191) and esters or ketones with α -alkoxycarbonyl (80) (Eq. 78) or arylsulfinyl (192) substituents (Eq. 79; 1-methyl-2-pyrrolidinone, NMP).

$$N(CH_3)_2 = \frac{1. C_2H_5MgBr}{2. CH_3CHO} + HO N(CH_3)_2$$

$$(85\%)$$
(85%)

There appears to be little restriction on the identity of the organomagnesium reagent itself; primary, secondary, vinylic, and arylmagnesium halides can all be used without complication.

4.2.1.2.2. Organolithium Reagents

These relatively basic nucleophiles initiate tandem difunctionalizations via conjugate additions to α , β -unsaturated amides (190, 193) and thioamides (194) much like their organomagnesium analogs. Elaborated benzyllithium reagents can react with esters, as evidenced by the preparation of tetralone 35 from methyl crotonate (Eq. 80). (195) Other alkyllithium

reagents usually will attack at the carbonyl moiety, resulting in 1,2 addition unless steric interactions between substrate and nucleophile retard or prevent this mode of attack. In such cases, efficient sterically directed β -addition— α -alkylation is observed. (196) Appropriately α '-substituted α , β -unsaturated

ketones follow a similar reaction pathway initiated by charge-directed conjugate addition of an organolithium reagent. (197-201)

4.2.1.2.3. Alcohol and Amine Reagents

The use of alkoxide reagents in tandem difunctionalization reactions has been limited. The oxygen analogs of organosulfur Michael donors are used in preparations of β -butyrolactones (148) via the MIRC process (see Eq. 60) and in a similar reaction sequence for the synthesis of a chromone (Eq. 61). (149) Lithium alkoxide-initiated MIMIRC dimerizations of α -bromoacrylates result in stereospecific syntheses of tetrasubstituted cyclopropanes (Eq. 81). (141)

Amine reagents are of greater utility, particularly in syntheses directed toward heterocycles and complex alkaloids. Yohimbanes can be prepared via an amino-Claisen rearrangement strategy (Eq. 82); (202) preparations of quinoline nuclei are also possible (Eq. 83). (149) Direct comparison of amines with

$$HC \equiv CCO_2C_4H_9-t$$
 + CH_3CN H (82)

mercaptides as Michael donors in tandem difunctionalizations shows that yields may be lower with the former. (147) In certain cases, hindered amide bases such as lithium diisopropylamide (LDA) can act in similar fashion. (190, 203) Conjugate addition of lithium diisopropylamide to methyl crotonate proceeds efficiently, and the resultant conjugate enolate is captured easily with methyl iodide. When phenylselenyl bromide is used as the α -functionalizing reagent, a *syn* elimination of the β -diisopropylamino group occurs in situ; and the α -phenylselenyl ester is isolated as the only product (Eq. 84). (203)

(E)-CH₃CH=CHCO₂CH₃ + LiN(C₃H₇-i)₂

$$(i-C_3H_7)_2N CO_2CH_3 + R$$

$$RX = CH_3I (92\%) (0\%)$$

$$RX = C_8H_5SeBr (0\%) (64\%)$$
(84)

4.2.1.2.4. Other Reagents

Alkylselenodimethylaluminum reagents act as Michael donors of alkylselenide synthons when reacted with α , β -unsaturated ketones and are analogous to alkylthiodimethylaluminum reagents. (204) Alternatively, trimethylsilyl triflate-mediated cleavage of phenyltrimethylsilylselenide generates a selenonucleophile. The phenylselenide generates a β -phenylseleno conjugate enolate which is α -functionalized and subsequently undergoes oxidative syn elimination of phenylselenenic acid to give α -functionalized α , β -unsaturated ketones (Eq. 85). (205)

Trialkylstannyllithium reagents initiate tandem vicinal difunctionalizations of α , β -unsaturated ketones, resulting in β -stannyl ketones. (206) Used in a three-component, four carbon–carbon bond forming MIMIRC-type sequence, the product stannane undergoes oxidative ring enlargement to produce cyclodecenones (Eq. 86). (168)

Organoaluminum and organozirconium reagents react with enones using nickel(II) catalysis; (207-209) such tandem difunctionalizations lead to prostaglandin intermediates (210) and new organoaluminum species (Eq. 87). (208) In a rare example of β -hydride addition followed by α -alkylation, diisobutylaluminum hydride—hexamethylphosphorictriamide functions effectively. (211) Acylate-nickel 1,4 additions to quinone monoketals followed by trapping of the conjugate

enolate with carbon electrophiles provide pivotal intermediates for the synthesis of isochromanone antibiotics (Eq. 88). (212)

$$+ n-C_3H_7CNi^-(CO)_nLi^+ \frac{1. (C_2H_6)_2O}{2. CH_2=CHCH_2I, HMPA} CH_3O CH_3O CG_3H_7-n (88)$$

Finally, attention should be brought to tandem vicinal annulation reactions of organosilane reagents using titanium (IV) chloride (213, 214) and tetrakis(triphenylphosphine)palladium. (215) Unsaturated ketones and esters are used as substrates and excellent stereocontrol typically is observed (Eq. 89). (214)

4.3. The α , β -Unsaturated Carbonyl Substrate

The broad variety of α , β -unsaturated ketones and esters that can be used in tandem vicinal difunctionalization sequences allows several factors and trends to be discussed. Other substrates such as aldehydes and amides have received less attention, making reactivity predictions more difficult and less reliable. Additionally, a family of noncarbonyl Michael-type acceptors such as vinylic nitriles, isoxazolines, and sulfones are good substrates for the tandem difunctionalization reaction.

4.3.1.1. Acyclic Enals and Enones

Conjugate addition—enolate trapping reactions of α , β -unsaturated aldehydes have not been widely explored. Cyclopropanations are possible using bromomalonates. (216) The aldehyde substrates appear to behave in a manner similar to analogous ketones in organocopper 1,4 addition—conjugate enolate alkylation, (102) with both comparable yields and high

diastereoselectivity resulting from net $\it trans$ difunctionalization. A recent synthesis of a degradation product of the antitumor antibiotic chlorothricin illustrates this observation by achieving net $\it trans$ dialkylation of an α , γ -dienal with complete regio- and stereocontrol (Eq. 90; potassium hexamethyldisilazide, KHMDS); (217) no 1,6 addition was expected or observed

owing to the twisted orientation of the diene moiety of the substrate. Michael additions of enolates to α , β -unsaturated aldehydes as the initiating step in a MIMIRC reaction proceed well. (218) Isolated yields, however, tend to be lower than those from the corresponding ketones.

In contrast to acyclic enals, acyclic enones have been studied in detail. As in most reactions involving a 1,4 addition, the degree of substitution of the substrate has considerable influence on the success of the reaction. (219) Substituents at the α' carbon of the ketone appear to act as steric directors, shielding the carbonyl carbon from 1,2 attack and thereby enhancing 1,4 addition, but the degree of influence of the α' substituent varies depending upon the nature of the Michael donor.

For organocopper Michael donors, phenyl and benzyl vinyl ketones are superior substrates to methyl vinyl ketones. (102, 220) Exocyclic vinyl ketones are sensitive to ring size, a seven-membered ring being superior to a six-membered ring (Eq. 91; 1,2-dimethoxyethane, DME). (221)

When enolates and acyl anion equivalents are used as Michael donors, methyl vinyl ketones are the poorest substrates and ethyl vinyl ketones the best, with

other groups falling in between (Eq. 92). (143, 222) The mesityl moiety of benzalacetomesitylene so hinders the carbonyl of the molecule that Wittig

$$SC_4H_9-n$$

$$1. (CH_3)_2CuLi, 0^{\circ}$$

$$2. CH_3I, DME$$

$$SC_4H_9-n$$

$$(CH_2)_n$$

$$SC_4H_9-n$$

$$(CH_2)_n$$

$$n = 2, (86\%)$$

$$n = 3, (93\%)$$

CH₂=CHCOR +
$$S$$

Li

CO₂C₂H₅

1. THF, HMPA, -78°

2. CH₂O

 S
 S

COR

COR

CO2

CO2

CO2

CO4

R = CH₃ (71%)

R = C₂H₅ (79%)

R = n

R = n

CH₃ (71%)

olefination using methylenetriphenylphosphorane is completely inhibited and instead a MIRC-type cyclopropanation is observed. (172)

A combination of large steric requirements and charge at the α ' position of the substrate ketone results in charge-directed conjugate addition—enolate functionalization reactions. (197) Alkyllithium reagents serve as Michael donors and the intermediate conjugate enolates are alkylated easily. (199) The (ethoxycarbonylmethylene)triphenylphosphorane 36 thus is elaborated into an acyl ylide 37, which can be converted into a substituted ketone by subsequent decarboxylation and hydrolysis (Eq. 93). (198) Conceptually related to this approach is the use of α , β -unsaturated iron acyls as substrates for tandem vicinal dialkylations, (200, 223-225) which both activate the α , β -unsaturated acyl moiety toward 1,4 addition and provide excellent diastereofacial selectivity during the reaction sequence resulting in usually rare net \emph{cis} dialkylation (Eq. 94). (200)

Substitution at the α carbon of the α , β -unsaturated ketone typically enhances the chemical yield of tandem difunctionalization reactions by retarding equilibration of the conjugate enolate intermediate before α -functionalization occurs. Invariably, when the α substituent is a methyl group, such enhancement is seen (Eq. 95), (221) but other, larger substituents may not provide similar results (*vide infra*).

Inasmuch as conjugate additions to enones display considerable steric sensitivity, increased substitution at the β carbon of an α , β -unsaturated ketone should be expected to decrease the overall reactivity of a Michael acceptor molecule. In the absence of Lewis acids, (219) β , β -disubstituted

enones tend to be relatively poor substrates for tandem difunctionalization reactions involving bulky, highly stabilized Michael donors. Other reagents, most notably organocoppers and enolates, are not so discriminating with acyclic enone substrates; usually, only modest differences in reactivity or chemical yields are observed. For instance, conjugate addition—aldol condensation reactions of (E)-3-penten-2-one and dimedone indicate the minimal inhibiting effect of additional substitution at the β carbon of the substrate (Eq. 96). (220) More pronounced perturbations occur when steric and electronic factors (that deactivate the substrate as a Michael acceptor) are combined (Eq. 97). (222) The relative bulkiness of a β substituent may also influence the reactivity of the substrate in charge-directed vicinal dialkylation reactions (Eq. 98). (197, 198) Clearly, with differing reactants and reaction conditions it is not possible to predict a priori which β substituent may be more detrimental than another. (102)

COCH₃

$$R = CH_3, R' = H$$

$$R = CH_3, R' = H$$

$$R = CH_3, R' = H$$

$$R = R' = CH_3$$

$$R = R' = COCH_3$$

$$R = H$$

$$R = OCH_3$$

$$R$$

R = CH₃

 $R = n - C_4 H_0$

(90%)

(78%)

4.3.1.2. Acyclic Enoates and Enamides

Vicinal difunctionalization of α , β -unsaturated esters has been exploited widely. Acrylate polymers are valuable not only as commodity polymers, but also in the study of chain structures and conformation of molecules; enoates serve as the substrates of choice in many MIRC and MIMIRC reactions.

For most conjugate addition—alkylation reactions of alkyl alkenoates, the identity of the alkyl group is not critical in influencing the reaction sequence, although differences may be observable. (141) When a Michael donor is chosen that attacks the substrate not only in the desired 1,4 sense but also competitively in a 1,2 fashion, the choice of a very bulky alkyl moiety for the ester can bias the reaction toward 1,4 addition by steric inhibition of 1,2 addition (Eq. 99). (196)

$$CO_{2} \longrightarrow OCH_{3} \qquad \frac{1. C_{6}H_{6}Li}{2. CH_{3}I} \longrightarrow CO_{2} \longrightarrow OCH_{3} \qquad (99)$$

$$C_{6}H_{5} \qquad C_{6}H_{5} \qquad (88\%)$$

Substitution at the α carbon of an α , β -unsaturated ester in simple difunctionalization sequences again does not alter the course of the sequence significantly. Conjugate addition of phenylthiomagnesium iodide to either methyl acrylate or methyl methacrylate followed by aldol condensation gives essentially identical yields of the β -hydroxy esters. (145) In sterically demanding MIMIRC-type reactions, α -substitution reduces chemical yields of the products, but the specific size or nature of the substituent itself appears to be of less importance (Eq. 100). (226) A simple strategy to activate enoates toward tandem vicinal difunctionalization is to employ an α electron-withdrawing substituent such as a diethoxyphosphinyl group (Eq. 101), (165) an alkoxycarbonyl group, (80, 215, 227) or a cyano group. (177) The additional electron-withdrawing group usually imparts sufficient reactivity to permit alkyllithium and Grignard reagents to act as Michael donors.

$$C_{2}H_{5}O_{2}C \longrightarrow P(OC_{2}H_{5})_{2} \qquad 1. C_{6}H_{5}C \equiv CLi, ZnCl_{2} \\ \hline THF, -78^{\circ} \\ \hline 2. C_{6}H_{5}CHO, reflux \qquad C_{2}H_{5}O_{2}C \longrightarrow CHC_{6}H_{5} \\ \hline CH_{2}C \equiv CC_{6}H_{5} \ (101) \\ \hline E:Z = 3:1$$

Enoates substituted at the β carbon experience increasing sluggishness in the conjugate addition step of the difunctionalization sequence as the steric bulk of the substituent(s) increases. Influence on chemical yields can be significant (Eq. 102), (203, 215) although this may not always be the case. (145, 173) One interesting example indicates that (*E*)-crotonates are preferred to (Z)-crotonates

(E)-RCH=CHCO₂C₂H₆
$$\frac{1. \text{ LDA, THF, 0}^{\circ}}{2. \text{ CH}_{3}\text{I}}$$
 (i-C₃H₇)₂NCHRCH(CH₃)CO₂C₂H₆ (102)

$$R = CH_{3} \qquad (92\%)$$

$$R = n-C_{3}H_{7} \qquad (77\%)$$

as substrates in organocopper 1,4 addition–conjugate enolate alkylations (Eq. 103). (102) In a similar case, palladium-catalyzed MIRC-type reactions of maleates proceed with greater facility than those of fumarates. Diastereoselectivity of the reaction is less, however, when the former substrate is employed (Eq. 104). (215) Methyl α , β -di(methoxycarbonyl)acrylate undergoes

CH₃CH=CHCO₂C₂H₅
$$\frac{1. [C_6H_5(CH_3)_2Si]_2CuLi}{2. CH_3I} C_6H_5(CH_3)_2Si C_6H_5(CH_3)_2Si$$

$$E \text{ isomer (88\%), } trans:cis = 97:3$$

$$Z \text{ isomer (82\%), } trans:cis = 99:1$$

CH₃O₂CCH=CHCO₂CH₃ + (CH₃)₃SiCH₂CH=CHCH₂O₂CCH₃

Pd[P(C₈H₅)₃]₄
toluene

$$CH_3O_2C$$
 CO_2CH_3

E isomer (32%), trans only

E isomer (32%), trans only Z isomer (60%), trans: cis = 1:1.3

high-yield indirect MIRC-type cyclopropanation using 2-nitro-2-propylmetal reagents as Michael donors followed by protonation and sodium hydride-mediated ring closure via an S_Ni process. (178)

Tandem vicinal dialkylations of α , β -unsaturated esters may be mediated by their corresponding tetracarbonyliron complexes. (228) Crotonates are less reactive than acrylates; the conjugate iron enolates undergo carbonyl insertion into the carbon–iron enolate bond and subsequent alkylation affords β -ketoesters (Eq. 105).

Secondary and tertiary α , β -unsaturated amides and tertiary thioamides undergo 1,4 addition—conjugate enolate alkylation reactions using alkyllithium or Grignard reagents as Michael donors. (190, 191, 194, 229) Two equivalents of the alkylmetal reagent must be used for secondary amide substrates, the first to deprotonate the amide and the second to undergo conjugate addition (Eq. 106). (190) Alternatively, a secondary amide can be protected as an *N*-alkyl-*N*-trimethylsilylamide (191)

(E)-CH₃CH=CHCONHCH₃
$$\frac{1. 2 \text{ eq } n-C_4H_9Li, THF}{2. CH_3I}$$
 (106)

before submission to tandem vicinal dialkylation.

N-Alkyl-*N*-(*N*,*N*-dialkylamino)enamides, which are particularly inert to 1,2-addition reactions, also serve as substrates for the reaction sequence. (193)

4.3.1.3. Cyclic Enones and Enoates

Owing to the wide occurrence of α , β -disubstituted cycloalkanones in nature, many tandem difunctionalization reactions of 2-cycloalkenones of moderate (5–8) ring size have been performed. General trends, especially for cyclopentenones and cyclohexenones, can be seen and employed in the design of efficient substrates for the reaction sequence. The influence of ring size on the rate of equilibration of the intermediate conjugate enolate is of primary concern. Cyclopentanone enolates equilibrate rapidly with respect to cyclohexanone enolates (118) so that regiospecificity of α -alkylation of such conjugate enolates can be lost if the reaction conditions are not chosen with care. Consequently, a substituents capable of stabilizing the conjugate enolate are employed to circumvent this problem. 2-Methyl-2-cyclopentenone appears to be a superior substrate for tandem vicinal difunctionalization when compared to 2-cyclopentenone, but larger alkyl substituents can reduce the effectiveness of the reaction sequence; 2-ethyl-2-cyclopentenone, for instance, is an inferior substrate to the 2-methyl analog. (114) Arylhetero substituents, on the other hand, both stabilize the conjugate enolate of the substrate toward equilibration and enhance α -alkylation. Ketones such as 2-phenylthio (90, 125) and 2-phenylselenyl-2-cyclopentenone (230) are 2-cyclopentenone synthetic equivalents which offer better stereo- and regiocontrol of the difunctionalization sequence. Enantiomerically pure 2-arylsulfinyl-2-cycloalkenones function similarly, with the additional ability to provide directable diastereofacial bias during conjugate addition, (231) producing 2,3-disubstituted cycloalkanones with high enantiomeric purities (e.g., Eq. 79). (192) Substitution at the β carbon of the cycloalkenone retards the rate of conjugate addition and can lower the degree of stereo- and regiocontrol as well as the chemical yield of the reaction. (232) Cycloalkenones are intrinsically less reactive than β -unsubstituted enones. A synthetically useful exploitation of this observation employs substrate 24, which undergoes regiospecific tandem difunctionalization at the exocyclic double bond; the exocyclic enone still is attacked exclusively even if β -substituted as in substrate 38 (135) (Eq. 107).

$$C_{6}H_{5}$$
 + 2 $C_{2}CH_{3}$ $C_{6}H_{5}$ $C_{6}H_{5}$

Stereospecific formation of norbornanones is possible when a MIMIRC synthetic strategy is used (Scheme 8). (136) In a similar vein, β -substituted cycloalkenones may be more reactive than β , β -disubstituted esters (Eq. 108). (233)

Lewis-acid catalysis of the conjugate addition can greatly enhance the rate at which β -substituted cycloalkenones react. (219)

Alkyl substituents at carbons of the cycloalkenone other than those of the alkenyl moiety typically do not interfere with the reaction sequence, (234) for example, 4,4-dimethyl-2-cyclopentenone (235) and 5,5-dimethyl-2-cyclopentenone, (236) and function similarly as substrates in the tandem vicinal dialkylation reaction sequence (in the latter case the question of conjugate enolate equilibration is moot). Strategically placed substituents on cyclopentenones are used as combined diastereofacial-biasing and conjugate enolate equilibration-inhibiting elements in total syntheses of prostaglandins (Eq. 109). (74, 237)

A combination of α - and β -substitution provides substrate molecules for the construction of vicinal quaternary carbon centers. (238) Although enolate equilibration (232) and steric congestion (239, 240) can prevent the straightforward application of the methodology, adjacent quaternary center construction can be successful (Eq. 110). (221, 241)

$$\frac{1. (CH_3)_2 CuLi}{2. CH_3 I, DME}$$
(110)

Cyclic enoates, or alkenolides, have not often been employed as substrates for tandem vicinal difunctionalization reactions. Those enjoying the greatest use are γ -butenolides and 4-substituted γ -butenolides, which are used in the total syntheses of lignans (159, 162, 163) and prostaglandin analogs (Eqs. 32, 67). (103) The reaction sequence is well behaved and yields of the products usually are quite high. δ -Pentenolide 39 undergoes a stereospecific Michael–Claisen difunctionalization sequence, resulting in an anthracenone used for the synthesis of olivomycin A (195) (Eq. 111, N,N -dimethyl-N,N -propyleneurea, DMPU).

4.3.1.4. Polyunsaturated Ketones and Esters

Multiply unsaturated ketones and esters can undergo "extended" Michael additions. For instance, 2,4-dienones may undergo 1,6 conjugate addition (242)

as well as 1,4 conjugate addition with a Michael donor; for 2,4,6-trienones, 1,8, 1,6, and 1,4 addition modes all are possible. (243) Application of tandem vicinal dialkylation methodologies to these substrates has received limited attention. Dienone 40 undergoes exclusive 1,4 addition of methyllithium, with subsequent *C*-methylation of the conjugate enolate proceeding in good yield (Eq. 112). (197) Similarly, dienal 41 functions as a substrate for exclusive 1,4 addition (Eq. 113; *cf.* Eq. 90). (217) Other related additions include organocoppers to fulvenes, (244) alkyllithiums to 2-naphthyloxazolines, (245, 246) and arene–chromium tricarbonyl complexes; (247) in each case,

only 1,4 addition is observed. As might be expected, the same behavior is observed for α , β -unsaturated ketones and esters bearing β -aryl substituents. (19, 67, 172, 177, 220)

Transient vicinal difunctionalization is exploited to incorporate the α -phenylseleno moiety into α , β -unsaturated esters; (203) extension to polyunsaturated esters also results in the same regiochemistry (Eq. 114).

$$CO_2C_2H_5$$
 1. LDA, THF $CO_2C_2H_5$ SeC_8H_5 (114)

Cyclopropane 42 is a related substrate in which 1,6-type addition is obtained when an organocopper reagent is used as Michael donor. (227) The resultant

enolate *C*-alkylates to afford net 2,6-dialkylation of 4-hexenoates (Eq. 116). On the other hand, when cyclopropane **43** is reacted under identical conditions, the 2,3-dialkylation product results (Eq. 116).

(98%)

4.3.1.5. Acetylenic and Allenic Carbonyl Substrates

The use of acetylenic ketones and esters as substrates for tandem vicinal difunctionalization reactions sometimes provides a route to activated olefins of high isomeric purity. Much like the stereospecific *cis* addition of organocopper reagents to alkynes, (6, 248) 1,4 addition of an organocopper to an α -acetylenic ketone or ester begins with net *cis* addition to give a vinylic organocopper intermediate. The reactivity of the electrophile that is added to complete the reaction sequence determines if the intermediate is trapped prior to equilibration through an allenoate species (Scheme 9). (249) The product geometry ratio depends upon the steric interactions between allenoate and electrophile. Many examples indicate that loss of the stereo integrity of the intermediate vinylic organocopper species is common; such is the case for methylation (Eq. 117), (97) chlorination, (249) and iodination (Eq. 119). (96, 250) Bromination appears to be stereospecific

$$C_2H_5C\Xi CCO_2CH_3$$
 1. $(CH_3)_2CuLi$ CO_2CH_3 (117)

in the opposite sense to the other halogens, but also yields products from reductive dimerization of the resultant vinyl bromide. (249) The ratio of isomeric olefins produced can be controlled by changing the counterion of the intermediate allenoate. (250) Acid chlorides appear to be sufficiently reactive electrophiles to give only net *cis* dialkylation; bulky electrophiles result in net *trans* dialkylation (Eqs. 119 and 120). (110, 249) The allenoate intermediates of

$$C_6H_5C \equiv CCO_2CH_3$$
 1. $(CH_3)_2CuLi$ C_6H_5 CO_2CH_3 (118)

 α -acetylenic ketones can be captured as allenol silyl ethers and subsequently α -alkylated (Eq. 121). (251)

$$HC = CCO_{2}C_{2}H_{5} \xrightarrow{1. CH_{3}Cu(C = CC_{4}H_{9}-n)Li} CO_{2}C_{2}H_{5}$$

$$C_{6}H_{5} CH = CHCOCI$$

$$C_{6}H_{5} (82\%)$$
(119)

$$HC \equiv CCO_2C_2H_5 \qquad \frac{1. \quad CH_3Cu(C \equiv CC_4H_9-n)Li}{2. \quad cycloheptanone} \qquad CO_2C_2H_5 \qquad (120)$$

Scheme 9.

Allenoates of α -acetylenic esters appear to be less prone to equilibration than those of corresponding α -acetylenic ketones. Propiolate esters undergo $\it trans$ -vicinal distannylations using 2.5 equivalents of a stannylcopper reagent (Eq. 45). (94) The product alkenes subsequently can be regiospecifically transmetalated at the α carbon and alkylated to give α -alkyl- β -stannyl- α , β -unsaturated esters. Complementary $\it cis$ distannylation is obtained by palladium-catalyzed addition of hexamethyldistannane. (252) $\it N,N$ -Dimethyl α -acetylenic amides, when reacted with one equivalent of trimethylstannylcopper, are

$$(CH_3)_3SiC = CCOC_4H_9 - t \qquad \frac{1. (CH_3)_2CuLi}{2. (CH_3)_3SiCl} C \qquad (86\%)$$

$$C_9H_5SCHClC_3H_7 - n$$

$$TiCl_4 \qquad COC_4H_9 - t$$

$$n - C_3H_7 \qquad SC_9H_5$$

$$(88\%)$$

 β -trimethylstannylated; the conjugate anion can be α -alkylated in useful yields. (95)

Acetylenic esters can function as substrates for MIRC-based synthetic strategies, providing preparations of highly substituted cycloalkenones (99) and α , β -unsaturated lactones. (253, 254) Hydroisoquinolines can be prepared via a conjugate-addition—amino-Claisen rearrangement sequence (Eq. 82); these products can be transformed into yohimbines. (202)

Allenic esters and ketones undergo 1,4 additions smoothly with organocopper reagents. The resultant conjugate enolates can be C-alkylated in dimethoxyethane, producing β , γ -unsaturated ketones and esters (Eq. 122). (255) The use of allene 1,3-diesters as substrates for MIRC-based heterocycle synthesis yields pyrazines, pyrazoles, quinolines, and thiophenes (Eq. 61), as well as other heterocyclic systems. (149)

$$= C = \frac{\text{CO}_2\text{C}_2\text{H}_6}{2. \text{ CH}_2 = \text{CHCH}_2\text{Cl}, DME} = \frac{1. (\text{CH}_3)_2\text{CuLi}, (\text{C}_2\text{H}_5)_2\text{O}}{2. \text{ CH}_2 = \text{CHCH}_2\text{Cl}, DME}$$
(122)

4.3.1.6. Functional Group Compatibility

Any functional group in the substrate that will not react with the Michael donor reagent or the conjugate enolate can be considered fully compatible. If a group's reaction rates with the initial Michael donor or the conjugate enolate are low compared with those reactions leading to the desired product, it will be tolerated. Most substituents with low nucleofugacity—alkoxy, alkylthio or alkylseleno groups, tertiary amino moieties, and ketals or acetals—rarely interfere. Electrophilic substituents, however, should be viewed with caution on two counts. Possible competition for the Michael donor reagent should be considered. Furthermore, when appropriately located in the substrate, such groups may compete with an extramolecular electrophile for alkylation of the conjugate enolate, resulting in MIRC-type products. Protected forms of carbonyl moieties, nitriles, and some alkenes are preferred when such behavior is to be avoided. Halogens usually can be tolerated, especially chloroalkyl groups, because of the relative inertness of these groups as enolate alkylating reagents. Organocopper Michael donors, however, in certain circumstances can reductively cleave halogens from a substrate to generate a new reactive anion. Relatively acidic groups such as hydroxy and

sulfhydryl often can be deprotonated with a nonnucleophilic base without interference in the subsequent dialkylation, or can be protected to ensure no interference. Alkylsulfinyl, alkylsulfonyl, and other groups that can be deprotonated to stabilized anions may serve as Michael donors, thus initiating undesirable polymerizations. Arylsulfinyl and arylsulfonyl groups, like some halo substituents, can be cleaved reductively from the substrate when an organocopper Michael donor is employed. The electrophilic nature and the anion- and dianion-stabilizing capability of the nitro group mandate its protection. (256)

4.3.1.7. Miscellaneous Substrates

The tandem vicinal dialkylation strategy can be used successfully for a number of substrates analogous to α , β -unsaturated carbonyl compounds. Although beyond the scope of this review, a sampling of these substrates and their difunctionalized products is presented in Table A.

Table A. Miscellaneous Substrates for Tandem Vicinal Difunctionalization			
View PDF			

4.4. The α -Functionalizing Reagent

The choice of an α -functionalizing reagent for the conjugate enolate should be determined by the same factors that affect the *C*-alkylation of regiospecifically generated enolates. Applicable generalizations follow. Any regiospecifically generated enolate that *can* equilibrate *may* equilibrate. The enolate is an ambident anion that can demonstrate competitive *O*-alkylation versus *C*-alkylation. In the case of organocopper-derived conjugate enolates, *C*-alkylation can be sluggish and requires good electrophiles to succeed.

4.4.1.1. Nature of the Reagent

A wide variety of electrophilic α -functionalizing reagents can be employed in tandem vicinal difunctionalizations. The most common reagents are alkyl iodides, allyl and propargyl bromides, aldehydes, and ketones. Hard–soft Lewis acid–base theory has been used to explain why these reagents are relatively good α -alkylating agents. (267) Softer, more polarizable electrophilic reagents show not only enhanced reactivity, but also essentially complete C-regioselectivity under normal conditions. A review of the C-alkylation of regiospecifically generated enolates discusses various electrophilic reagents.

(59) Table B lists some of the more popular α -functionalizing reagents used in α , β -difunctionalization reactions.

Table B. Some α -Functionalizing Reagents for Tandem Vicinal Difunctionalization

CH ₃ I	I ~=~~ CO ₂ CH ₃
CH ₂ " CHCH ₂ Br CH ₂ " C(COCH ₃) Si (CH ₃) ₃ H ₂ CO CH ₃ CHO C ₆ H ₅ CHO (C ₆ H ₅) ₂ S ₂	BrCH ₂ CO ₂ CH ₃ BrCH ₂ C \equiv CC ₂ H ₅ C ₆ H ₅ SeBr CO ₂ [(CH ₃) ₂ NCH ₂] ⁺ Cl ⁻ [CH ₂ " CHP(C ₆ H ₅) ₃] ⁺ Br ⁻
$C_6H_5CH_2Br$ I_2 Br_2 $HC(OC_2H_5)_3$	cH ₂ " CHCO ₂ CH ₃ ethylene oxide acetone cyclohexanone NO ₂ CO ₂ CH ₃

Considerable research involving the use of acyl chlorides as α -functionalizing reagents indicates that *O*-acylation competes with *C*-acylation. (69) The ratio of products is dependent upon the nature of the reagent, (110, 268) the substrate, (269, 270) and the reaction conditions. (79, 271, 272) O, C-Diacylated products often are obtained, (273) but can be hydrolyzed to the desired α , β -difunctionalized product. The use of chloroacetyl chloride takes advantage of this observation, generating a butenolide fused to carbons 1 and 2 of the original substrate (Eq. 123); (274) crotonyl chloride gives similar results. (271)

Reagents for α -functionalization may be intramolecular, giving ring closure in MIRC-based reactions. Such a reagent may be part of the original substrate (140, 213, 275, 276) or, more commonly, present in the Michael donor in either a masked (124, 202, 277, 278) or native state. (120, 227, 279) Yields in these cases generally are quite good owing to rate acceleration and decreased byproduct formation.

Bifunctional electrophilic reagents allow some generalization as to overall reactivity. Esters are quite unreactive, as are vinylic halides. Acyl halides, primary alkyl iodides, propargyl and allylic halides, α -halo esters, aldehydes, and nitroalkenes are among the most reactive reagents.

4.4.1.2. Effect of the Nature of the Reagent on the Yield of α -Functionalization Only relatively reactive electrophiles result in good amounts of α -functionalization of the conjugate enolate. These electrophiles include methyl and primary alkyl iodides; propargylic, allylic, or benzylic halides; and aldehydes. Organocopper-derived conjugate enolates can be difficult to α -functionalize unless the following prescriptions are: use of the most reactive electrophiles and changes in solvent (221, 232, 280) or counterion. (220, 281) Within a series of homologous reagents, smaller electrophiles typically are more efficient than sterically larger ones (Eqs. 124 (220) and 125 (95)).

$$(CH_3)_2C=CHCOCH_3$$

1. $(CH_3)_2CuLi$
2. $RCHO, ZnCl_2$
 $R = CH_3$ (77%)
 $R = C_2H_5$ (50%)

4.4.1.3. Effect of the Nature of the Reagent on the Stereochemistry of α -Functionalization

Thermodynamically more stable *trans* α , β -difunctionalized products are formed predominantly in the reaction sequences regardless of the electrophile. When the Michael donor is large, (114) small changes in the steric profile of the electrophile can result in complete stereoselectivity (Eq. 9). In the case of α , β -disubstituted enone substrates, steric approach control analysis is more predictive of the outcome than product development control; net *cis* dialkylation may result (Eq. 126). (232) Steric approach control may predominate

even when its operation requires formation of significantly less thermodynamically stable products (Eq. 79). (192)

4.4.1.4. Functional Group Compatibility

Relatively acidic functional groups such as hydroxy and sulfhydryl and those that facilitate deprotonation, such as β -ketoesters and alkylsulfinyl or alkylsulfonyl moieties, should not be present in the electrophile. Proton donors preclude α -functionalization by conjugate enolate quenching. Electrophilic reagents with several nucleofugal centers can be employed without problems if there is a significant difference in the electrophilicity of the moieties present in the reagent; a variety of these have found application in prostaglandin synthesis. (86, 258, 282-286) Various dihalides, (194, 261) α -halo esters, (100, 279) and α , β -unsaturated acid chlorides (110) also act as selective electrophilic α -functionalizing reagents.

5. Synthetic Utility

Tandem vicinal difunctionalization of an α , β -unsaturated carbonyl-containing substrate represents a convergent synthetic strategy that has considerable appeal and versatility. By linking a Michael-type addition and an enolate-mediated carbon–carbon bond-forming reaction through a variety of substrates, molecules with regiospecifically introduced multifunctional arrays are generated. Michael–aldol difunctionalizations of cycloalkenones provide 2-hydroxyalkyl-1,5-diones; 1,4-organocopper addition–alkylation difunctionalizations of propiolates produce stereoisomerically pure α , β -unsaturated esters. Cyclic 1,3-dicarbonyl functionality is obtained by Michael ring-closure reaction, for example, Michael addition followed by Dieckmann condensation. Sequential Michael ring-closure reactions yield complex polycyclic products that may be inaccessible through other routes. Conjugate addition–alkylations of allenyl ketones provide γ , δ -unsaturated ketones. Clearly, any of a number of permutations is possible, indicating the versatility of the technique.

The α , β -dialkylated carbonyl moiety is a common structural element in many natural products and a common synthetic element in organic chemistry. For these reasons, tandem vicinal difunctionalization has found considerable exploitation in natural product synthesis. Table C lists some of the natural products that have been prepared by the reaction sequence. It has been pivotal in the development of prostaglandin synthesis and is the method of choice for their preparation. (287) A variety of terpenoids have been prepared by the technique, (288) including steroids, (289, 290) many of whose syntheses have relied on tandem vicinal dialkylation to form the critical C-D ring juncture in a stereospecific manner. Polyketide-derived anthraquinones (195) can be prepared by the difunctionalization strategy. Modification of the Robinson annulation (291) has led to the preparation of *cis*- and *trans*-decalins, (292) hydrindanes, (293) and hydroazulenes. (294) The use of butenolides as substrates provides direct access to lactone antibiotics. (159, 295)

Table C. Some Natural Products Prepared Employing Tandem Vicinal Difunctionalization

Product	Reference
Aklavinone	153
Anthraquinones	195

Aromatin	164
Ascochlorin	301
Atisiranone	302
Avenaciolide	303
Bicyclo[3.2.1]octanes	123
Chlorothricolide	304
Clerodanes	292
Compactin	305
Coriamyrtin	306
Coriolin	307
Damascones	308
Eremolactone	295
Eriolanin	309
Galactin	158
Gascardic acid	310
Gymnomitrol	311
β -Himachalene	312
Hydrindanes	293
Hydroazulenes	247
Integerrimine	313
trans- γ -Irones	314
Ishwarone	315
Isostegane	162
Ivalin	262
Khusimone	127
Lanvandulol	255
Laurene	316
Longifolene	317
Lycopodine	26
Methyl jasmonate	318
Methyl vouacapenate	274
Methylenomycin B	319
Myodesmone	320
Nagilactone F	321
Noraflavinine	144
β -Panasinsene	322
Parthenin	91

Pentalenene	323
Podorhizol	159
Prostaglandins	89
Pseudoguaianes	73
Pyrethroids	177
Quadrone	324
Quassinoids	58
Sarkomycin	325
Silphinene	326
Steroids	277, 290, 327, 328
Strigol	180
Valerane	118
Vernolepin	329
Zonarol	138

Heterocycles are available by exploitation of this methodology, (148, 296) an area which recently has seen renewed interest. (146, 149, 226, 297-299) MIRC sequences and their variations (137) allow the preparation of cyclopropanes and cyclobutanes, (201) provide a protocol for appending new rings onto a substrate, (300) and allow access to complex polycycles and spirocycles.

6. Experimental Conditions

6.1. Preparation and Handling of Nucleophilic Reagents

The majority of the nucleophiles discussed in this review require in situ preparation because of their high reactivity. Anhydrous solvents, glassware, reagents and transfers, and an inert atmosphere are required. Simple benchtop techniques using routine laboratory glassware, syringes, and cannulae provide sufficient exclusion of air and moisture while minimizing cost and complexity. (330, 331)

Many of the simple nucleophiles are commercially available; frequently those that are not require the use of commercially available organometallics such as Grignards or organolithiums in the preparation process. Degradation of the titer of such reagent solutions occurs with time because of contamination with oxygen or moisture. Freshly prepared solutions of Grignards and organolithiums may vary appreciably in strength because of the inability to precisely control a number of factors, such as temperature of formation and solvent loss. It is strongly recommended that these organometallics be titrated prior to use in any phase of a 1,4 addition. A number of new titration methods are easy and accurate. The nature of the indicator(s) requires only one titration to be performed. (332-336)

Methods also exist for verifying the complete formation of stoichiometric organocuprates. (71) Use of these titration procedures assures the greatest likelihood of avoiding a specious result in the initial step of an attempted tandem vicinal difunctionalization.

6.2. One-Vessel Tandem Vicinal Difunctionalization vs. Vicinal Difunctionalization via a Neutral Intermediate

Before α -alkylation of a conjugate enolate or its trapping as a masked neutral intermediate is investigated, it is best to carry out a proton quench. By examination of the β -addition product, the efficiency of the first step of tandem vicinal difunctionalization can be ascertained clearly. Optimization of the first stage guarantees generation of the maximum amount of conjugate enolate regardless of the eventual pathway of α -functionalization.

The number of examples of one-vessel tandem vicinal difunctionalization greatly outnumbers those via a neutral intermediate. In most instances, recourse to the latter method is made only after variations of the former have failed. (337) This generalization applies particularly for intermolecular α -alkylations. Usually, the following are made to assure that the one-pot difunctionalization occurs: solvent changes, (221, 232) the reactivity of the alkylating agent increased, (118) other nucleophile counterions used, (114) the sequence of the alkylation process altered, (338) and combinations of all of

these.

If these tactics are unsuccessful, trapping of the conjugate enolate as a neutral intermediate is usually performed; the trimethylsilyl enol ether is used most often in this capacity. (337, 339, 340) Purification of the neutral intermediate serves two functions: the opportunity to assess the amount of 1,4 addition and the removal of byproducts that may complicate the α -alkylation step. Regeneration of the conjugate enolate from its silyl enol ether can be done in liquid ammonia—tetrahydrofuran with lithium amide (64, 339) or in diethyl ether with methyllithium. (4) When compared directly with the one-vessel procedure, the two-step method generally produces the higher yield.

6.3. Solvent

The choice of solvent for tandem vicinal difunctionalization requires striking a balance between a good solvent for 1,4 addition and one that can likewise enhance the α -functionalization. Diethyl ether, in most instances, is the best solvent for the conjugate addition of cuprates; (341) however, it is a poor solvent for enolate alkylation. When only one solvent is used throughout both the conjugate addition and α -alkylation steps, it is tetrahydrofuran. Even though tetrahydrofuran, in some instances, may be disadvantageous for the initial step, (341) it is a better alkylating medium than diethyl ether. Subsequently, with enone substrates, diethyl ether and tetrahydrofuran have been used with approximately the same frequency for the first step. On the other hand, both steps of the reactions of enoates and enamides are preferentially carried out in tetrahydrofuran.

To obtain maximum yields (since the seminal work of Stork, (26) Boeckman, (232) and Coates and Sandefur (221)), most experimentalists modify the nonpolar medium of conjugate addition. Two general procedures exist. First, after the conjugate addition, solvent is removed and 1,2-dimethoxyethane (DME) is added for the alkylation step; (221) this method has not been exploited to a great extent. The alternative procedure involves altering the structure and reactivity of the conjugate enolate by admixing a polar aprotic solvent such as HMPA in a ratio of 10–20% by volume. (232, 342) The latter protocol has received wider use because of its greater simplicity. Cyclic ureas such as N,N¢-dimethyl-N,N¢-propyleneurea (DMPU) can be substituted for the animal carcinogen HMPA as cosolvent in the reactions of nucleophiles and bases, (343) and one example of its use in a tandem vicinal difunctionalization is reported. (260) Other polar solvents that have not been utilized routinely as adjuvants include N,N,N¢,N¢-tetramethylethylenediamine (TMEDA) (118) and liquid ammonia. (344) Inverse addition, adding the enolate to alkylating agent dissolved in a polar aprotic solvent, increases the yield of desired product in some cases. (114, 338, 345)

It should be emphasized that polar aprotic solvents (donor solvents (341))

generally are deleterious to 1,4 additions (39, 118) and so should not be a part of the reaction medium until that step is complete. Sulfur-stabilized anions (151, 164) are an obvious exception to this generalization; here HMPA is needed to assure the desired 1,4 regioselectivity.

6.4. Temperature

Several patterns are discernible as to the temperatures used in the two steps of vicinal tandem difunctionalization. In keeping with the high lability of the nucleophiles, to maintain regioselectivity, and in order to minimize alkylation of the conjugate enolate with unreacted α , β -unsaturated substrate, the first step is usually carried out at -78 to $-30^\circ.$ The reactions are initiated by adding the substrate to the nucleophile at the lower end of the range, and the reaction temperature then is permitted to rise to allow conjugate enolate formation to occur within a reasonable time (2–4 hours). Obviously, monitoring disappearance of starting material or appearance of β -substituted product makes for an informed decision as to whether or not the reaction temperature needs to be raised.

The conjugate addition is performed on average at lower temperature than the α -alkylation. Frequently, the enolate mixture is recooled to -78° prior to adding the adjuvant solvent and the alkylating agent. Care must be exercised during any sampling procedure or addition step to rigorously exclude contaminants such as moisture. Temperatures of -30 to 0° are usually sufficient for alkylations with highly reactive reagents such as methyl iodide and allylic and propargylic bromides. Somewhat less reactive halides (e.g., α -bromoesters (114)) may require room temperature. The heating of reaction mixtures above room temperature usually is reserved for intramolecular alkylations (82) where steric factors neutralize the effect of enolate equilibration that most certainly occurs but goes undetected.

For the most part, the temperatures reported are those of the cooling bath, not those recorded from an internal thermometer. The exothermic nature of both steps of tandem vicinal difunctionalization warrants routine use of the latter protocol if a deeper understanding of these multifaceted processes is to be acquired.

7. Experimental Procedures

In this section, examples are given to highlight the various factors that have been discussed throughout the text. The procedures bring together many of the aspects that require consideration for a tandem vicinal dialkylation protocol to succeed. They have been chosen because they illustrate these principles in detail.

Catalytic organocopper reactions with Grignards and an organolithium are outlined; quenching of the enolates is done in situ, intramolecularly, and via a neutral intermediate. Conjugate addition of a mixed homocuprate followed by an inverse quench is also described. A procedure involving a conjugate enolate derived from a higher-order cuprate, trapped as a silyl enol ether and α -alkylated in the presence of a transition metal catalyst, is detailed.

Examples of noncuprate nucleophiles include an ester enolate initiating an intramolecular ring closure (MIRC), a sulfur-stabilized anion regionelectively undergoing 1,4 addition to an enone followed by in situ α -alkylation, and a Grignard adding to a sulfinyl-activated enone in asymmetric fashion.

7.1.1.1. Methyl

3,3-Dimethyl-6-oxo-2-[5-(trimethylsilyl)-4-pentynyl]cyclohexanecarboxylate (Copper-Catalyzed Conjugate Addition of a Grignard Reagent to a Cyclic Enone Followed by in situ α -Acylation) (79)

To 6.25 g (50 mmol) of 4,4-dimethyl-2-cyclohexen-1-one and 0.5 g (5.6 mmol) of cuprous cyanide in 400 mL of diethyl ether at –23° under argon was added 100 mL (~0.75 M in diethyl ether) of 5-trimethylsilyl-4-pentynylmagnesium iodide during 4 hours. Methyl chloroformate (8 mL, 100 mmol) was added and stirring continued for 1 hour at –23° and 0.5 hour at room temperature. Hydrochloric acid (100 mL, 2.0 M) then was added and the organic phase separated and dried with magnesium sulfate. The solvent was removed and the residue chromatographed on silica gel using 5% diethyl ether–petroleum ether to give methyl

3,3-dimethyl-6-oxo-2-[5-(trimethylsilyl)-4-pentynyl]cyclohexanecarboxylate, 9.66 g (60%). IR 2000, 2140, 1755, 1715, 1660, 1615, 1440, 1280, 1250, 1225, 1205, and 845 cm⁻¹; 1 H NMR (CDCl₃) δ 0.13 (s, 9*H*), 0.93 (s, 3*H*), 1.02 (s, 3*H*), 1.2–2.3 (m, 11*H*), 3.74 (s, 3*H*). Anal. Calc. for C₁₈H₃₀O₃Si : C, 67.05; H, 9.4. Found: C, 67.1; H, 9.65.

7.1.1.2. Octahydro-5-methylene-1(2H)-naphthalenone (Lewis Acid–Copper-Catalyzed Conjugate Addition of an Organolithium to 2-Cyclohexen-1-one and Protonation of the Conjugate Enolate Followed by Intramolecular α -Alkylation) (82)

To a cold (-78°) stirred solution of (5-chloro-2-pentenyl)-trimethylstannane (100 mg, 0.37 mmol) in 3.6 mL of dry THF was added a solution of methyllithium in diethyl ether (0.28 mL, 0.41 mmol). The colorless solution was stirred at -78° for 15 minutes. Anhydrous MgBr₂, (41 mg, 0.4 mmol) was added and the resultant milky solution was stirred for 20 minutes. After successive addition of CuBr·DMS (19 mg, 0.09 mmol) and 2-cyclohexen-1-one (0.04 mL, 0.41 mmol), the solution was stirred at -78° for 3 hours. Saturated aqueous ammonium chloride (pH 8) and diethyl ether were added successively and the layers were separated. The aqueous layer was washed twice with ether. The combined ether extracts were washed with saturated aqueous ammonium chloride and dried over anhydrous MgSO₄. Removal of the solvent gave a colorless oil (81 mg) which was subjected to column chromatography on silica gel (elution with 3:2 petroleum ether-ether). Distillation (air bath temperature 82–85°/0.2 Torr) of the oil thus obtained provided 60 mg (81%) of 3-(5-chloro-2-pentenyl)cyclohexanone. IR (film) 1700, 1630, 900 cm⁻¹; ¹H NMR (CDCl₃) δ 1.52–2.48 (series of m, 13*H*), 3.54 (t, J = 6 Hz, 2H), 4.85 (s, 2H); exact mass calculated for $C_{11}H_{17}$ 35CIO: 200.0968; found: 200.0963.

To a solution of the ketone (105 mg, 0.53 mmol) in 2.6 mL of dry THF at room temperature was added 1.5 mmol of potassium hydride (300 mg, 20%) dispersion in mineral oil), and the resultant mixture was stirred at room temperature for 2 hours. Saturated aqueous ammonium chloride was added slowly and the mixture was extracted thoroughly with ether. The combined ether extracts were dried over anhydrous MgSO₄. Removal of the solvent followed by distillation (air bath temperature 100–120°/23 Torr) of the residual material provided 69 mg (86%) of a clear oil which consisted of a mixture of bicyclic ketones in a ratio of 1:2. Separation of this mixture by column chromatography on silica gel (10 g, elution with 10:1 petroleum ether-ether) gave 21 mg of cis-octahydro-5-methylene-1(2H)-naphthalenone. IR (film) 1700, 1630, 895 cm⁻¹; ¹H NMR (CDCl₃): δ 1.31–2.27 (series of m, 14*H*), 4.66 (t, J = 2 Hz, 1H), 4.69 (s, 1H); exact mass calculated for $C_{11}H_{16}O$: 164.1202; found: 164.1205. There was also obtained 40 mg of trans-octahydro-5-methylene-1(2H)-naphthalenone, mp 28–29°; IR (CHCl₃): 1700, 1635, 890 cm⁻¹; ¹H NMR (CDCl₃): δ 1.20–2.45 (series of m, 14*H*), 4.70 (s, 1*H*), 4.75 (s, 1*H*); exact mass calculated for $C_{11}H_{16}O$: 164.1202; found: 164.1202].

7.1.1.3. (±)-2 α ,3 β ,4 α - and (±)-2 α ,3 α ,4 β

-2,4-Dimethyl-3-[2-(1,3-dioxan-2-yl)-ethyl]cycloheptanone (Copper-Catalyzed Conjugate Addition, Trapping of the Enolate as a Neutral Equivalent, Solvent Change, and Subsequent α -Alkylation) (91)

A solution of Grignard reagent was prepared from 0.243 g (10.0 mmol) of magnesium turnings and 1.73 g (8.87 mmol) of 2-(2-bromoethyl)-1,3 dioxane in 15 mL of THF. The light-gray Grignard solution (not titrated) was cooled to

–20° and 95.2 mg (0.50 mmol) of copper(I) iodide was added. The reaction mixture was stirred at –20° for 30 minutes and 1.00 g (8.06 mmol) of 4-methyl-2-cyclohepten-1-one in 4 mL of dry THF was added over a 20-minute period to the now black reaction mixture. When the addition was complete, 1.40 mL (1.01 g, 10.0 mmol) of triethylamine and then 1.52 mL (1.30 g, 120 mmol) of chlorotrimethylsilane were added. The reaction mixture was allowed to warm to room temperature over 30 minutes and then was poured into 150 mL of saturated aqueous NaHCO₃ solution and 400 mL of ether. The organic phase was separated, washed with 100 mL of saturated aqueous NaHCO₃ solution and 100 mL of brine, and then dried over MgSO₄.

Removal of solvent in vacuo yielded 2.70 g (9.52 mmol, 118%) of a yellow liquid. TLC analysis (10% ether in hexanes) showed two spots with R_f 0.25 and 0.76, with the latter being UV active. Preparative HPLC separation yielded 876.3 mg (2.81 mmol, 35%) of a colorless liquid that gave a satisfactory combustion analysis: IR (neat) 1663, 1383, 1259 cm⁻¹; ¹H NMR (CCl₄) δ 0.9 (m, 3*H*), 3.68 (br t, J = 11 Hz, 2*H*), 4.05 (dd, J = 4 and 12 Hz, 2*H*), 4.40 (br t, 1*H*), 4.75 (m, 1*H*); ¹³C NMR (CDCl₃) *trans* isomer 0.19, 20.4, 21.9, 25.8, 28.0, 32.9, 34.7, 34.9, 35.7, 41.1, 66.7, 102.4, 111.3, 153.7. Anal. Calc. for C₁₇H₃₂O₃Si : C, 65.38; H, 10.25. Found: C, 65.05; H, 10.4.

To a solution of 786.3 mg (2.52 mmol) of *trans* (\pm)-[(3-[2-(1,3-dioxan-2-yl)ethyl]-4-methyl-1-cyclohepten-1-yl)oxy]trimethylsilan e in 5 mL of DME at room temperature was added 2.04 mL of 1.30 M methyllithium in ether (2.65 mmol) over a 2-minute period. The mixture was stirred at room temperature for 45 minutes and then cooled to 5° in an ice bath, and 3.58 g of iodomethane (2.52 mmol) was added rapidly. The mixture was stirred at 5° for 15 minutes and then poured into a mixture of 100 mL of saturated aqueous NaHCO3 and 180 mL of ether. The organic layer was separated, washed with 100 mL of water and 100 mL of brine, and dried over MgSO4. TLC analysis (40% ether in hexanes) showed two spots (H_2SO_4 charring) with R_f 0.25 (strong) and 0.32 (weak).

Removal of the solvent in vacuo yielded 683.1 mg (2.71 mmol, 108%) of a yellow liquid. The crude product was purified by column chromatography (40% ether in hexanes) to yield 51.2 mg (0.203 mmol, 8%) of one C-2 epimer (R_f 0.31) and 450.0 mg (1.79 mmol, 71%) of the other C-2 epimer of the title compound. Fraction 1: IR (neat) 1704, 1460, 1380, 1242, 1145 cm⁻¹; ¹H NMR (CCl₄) δ 1.02 (d, J = 7 Hz, 6H), 3.65 (br, t, J = 11 Hz, 2H), 4.04 (dd, J = 5 and 11 Hz, 2H), 4.40 (br t, 1H). Fraction 2: IR (neat) 1702, 1460, 1380, 1242, 1145 cm⁻¹; ¹H NMR (CCl₄) δ 0.91 (d, J = 7 Hz, 3H), 1.03 (d, J = 7 Hz, 3H), 3.65 (br t, J = 11 Hz, 2H), 4.04 (dd, J = 5 and 11 Hz, 2H), 4.40 (br t, 1H); ¹³C NMR (CDCl₃) 15.9, 20.7, 20.8, 25.3, 25.6, 30.6, 33.9, 36.6, 42.5, 46.3, 48.0,

66.6, 102.2, 215.7. Anal. Calc. for $C_{15}H_{26}O_3$: C, 70.88; H, 10.24. Found: C, 70.71; H, 10.27.

7.1.1.4. Methyl trans-2-(6-Methoxy-2-naphthyl)-5-oxocyclopentaneacetate (Conjugate Addition Using a Mixed Homocuprate and Inverse Quenching of the Conjugate Enolate) (114)

In a dry, argon-purged, round-bottomed flask with a gas inlet and serum stopper was placed 0.065 g (0.5 mmol) of *n*-pentynylcopper. To this was added 0.61 mL (0.5 mmol, 0.82 M in THF) of

6-methoxy-2-naphthylmagnesium bromide via syringe. The mixture was stirred rapidly for 1 hour at room temperature during which time the solution became dark green and homogeneous.

To the (6-methoxy-2-naphthyl)-1-pentynylcoppermagnesium bromide (0.5 mmol) was added 0.05 mL (0.5 mmol) of 2-methyl-2-cyclopenten-1-one. During the course of stirring for 3 hours, the solution turned black but remained homogeneous. To a separate, dry, argon-purged, two-necked, round-bottomed flask fitted with a gas inlet and serum stopper were added 10 mL of dry HMPA and 0.66 mL (5.0 mmol) of ethyl iodoacetate. The enolate solution was diluted with 2.5 mL of dry THF and transferred via syringe to the room-temperature HMPA solution, and stirring was continued for 16 hours. The dark green-black solution became faint yellow over this period. The reaction mixture was then diluted with 10 mL of diethyl ether and saturated aqueous ammonium chloride, and the phases were separated. HPLC analysis indicated no unalkylated material: IR (CHCl₃) 3040 (w), 2945 (s), 1745 (s), 1730 (s), 1640 (s), 1600 (s), 1400 (s), 1380 (m), 1260 (s), 1150 (s), 1010 (m), 880 (m), 850 (m) cm⁻¹; ¹H NMR (CDCl₃) δ 0.62 (s, 3*H*, C₁₃-CH₃), 1.32 (t, J = 7 Hz, 3H, C_2H_5), 2.45 (b, 7H), 3.85 (s, 3H, OCH₃), 4.18 (q, J = 7 Hz, 2H, C_2H_5), 7.4 (b, 6*H*); mass spectrum (70 eV) m/z (rel intensity) 340 (M⁻⁺, 5), 295 $(M^{-} - 45, 3), 45$ (base).

7.1.1.5. tert-Butyl trans-2-Ethoxycarbonylcyclopentaneacetate [Conjugate Addition of an Ester Enolate Followed by Intramolecular Alkylation (MIRC)] (129)

Under a nitrogen atmosphere, to a THF–hexane $(1.5 \pm 1 \text{ mL})$ solution of lithium diisopropylamide (1.5 mmol) was added a THF (1.5 mL) solution of *tert*-butyl acetate (175 mg, 1.5 mmol) at -78° . After 30 minutes, potassium *tert*-butoxide (169 mg, 1.5 mmol) in THF (2.5 mL) was added and the mixture was stirred for 10 minutes. Ethyl 6-iodo-2-hexenoate, (133 mg, 0.5 mmol) in THF then was added and the reaction was continued for 30 minutes at -78° . Saturated aqueous ammonium chloride was added, and organic materials were extracted with ethyl acetate, dried over Na_2SO_4 , and concentrated. Short-path distillation at 105° (0.5 mm Hg) gave *tert*-butyl *trans*-2-ethoxycarbonylcyclopentaneacetate (107 mg, 84%). IR (neat) 1720 cm^{-1} . ¹H NMR (CDCl₃- CCl₄) δ 1.25 (t, J = 7 Hz, 3H), 1.43 (s, 9H),

1.6–2.0 (m, 6*H*), 2.0–2.6 (m, 4*H*), 4.11 (q, J = 7 Hz, 2*H*); ¹³C NMR (CDCl₃-CCl₄) δ 14.2, 24.5, 28.0, 29.9, 32.3, 40.4, 40.5, 49.5, 59.9, 79.7, 171.1, 175.1.

7.1.1.6. (±)-2 α ,3 β

-3-(1-Methylthio-2-propenyl)-2-(3-trimethylsilyl-2-propynyl)-cyclopentanone (Conjugate Addition of a Sulfur-Stabilized Anion Followed by α -Alkylation in situ) (151)

sec-Butyllithium (1.84 M in pentane) was added dropwise to a stirred solution of allyl methyl sulfide (0.49 g, 5.6 mmol) in 20 mL of THF containing 1.0 g (5.6 mmol) of HMPA at -50° until an initial coloration due to the anion persisted in the solution. More sec-butyllithium (3.04 mL, 5.6 mmol) then was added and after 10 minutes the temperature of the solution was lowered to -78° . Neat 2-cyclopenten-1-one (0.46 g, 5.6 mmol) was added slowly to keep the temperature of the solution below -70° . The yellow color of the anion disappeared and after 2 minutes (3-iodo-1-propynyl)trimethylsilane (2.52 g, 10.1 mmol) was added dropwise to the reaction mixture at -78° . The temperature of the reaction mixture was raised to -45° during 90 minutes. The reaction was quenched with aqueous ammonium chloride and then worked up to give a pale yellow oil, which was subjected to preparative TLC (SiO₂, CH₂Cl₂) to yield two fractions. The more polar fraction, R_f 0.5, a pale yellow oil, was a 3:2 diastereomeric mixture of (E)-2-(3¢-trimethylsilyl-2-propynyl)-3-(1²-methylthio-2²-propenyl)-1-cyclopenta

(*E*)-2-(3¢-trimethylsilyl-2-propynyl)-3-(1²-methylthio-2²-propenyl)-1-cyclopenta none: 2.65 g (75%); IR 2180 (m, C = C), 1750 (s, C " O) cm⁻¹; ¹H NMR (major diastereomer) δ0.13 [s, 9*H*, Si(CH₃)₃], 1.6–2.7 (m, 8*H*, H-2, H-3, H-4, H-5, H-1¢), 3.40 (ddd, J = 9.4, 5.6, and 0.5 Hz, 1*H*, H-1²), 5.11 (ddd, J = 16.3, 2.0, and 0.5 Hz, 1*H*, H-3²), 5.22 (ddd, J = 10.2, 2.0, and 0.2 Hz, 1*H*, H-3²), 5.77 (1H, ddd, J = 16.3, 10.2, and 9.5 Hz, H-2²); ¹³C NMR δ [q, Si(CH₃)₃], 14.3 (q, SCH₃), 19.6 (t, C-1¢), 24.2 (t, C-4), 37.6 (t, C-5), 44.2 (d, C-3), 50.5 (d, C-2), 53.3 (d, C-1²), 86.8 (s, C-3¢), 103.7 (s, C-2¢), 117.9 (t, C-3²), 137.0 (d, C-2²), 217.0 (s, C-1); mass spectrum calculated for C₁₅H₂₄OSSi (M⁺⁺) m/e 280.1316; found: 280.1306.

The less polar fraction, R_f 0.7, was a mixture of two major diastereomers (3:2) and one minor diastereomer of

3-(1²-methylthio-2-propenyl)-2,5-bis[3¢-(trimethylsilyl)-2¢-propynyl]-1-cyclopen tanone: 0.32 g (4%); IR 2179 (s, C = C), 1745 (s, C " O) cm⁻¹; ¹H NMR (major diastereomer) δ 0.14 [s, 18*H*, Si(CH₃)₃], 1.8–2.8 (m, 9*H*, H-2, H-3, H-4, H-5, H-1¢), 2.02 (s, 3*H*, SCH₃), 3.29 (ddd, J = 9.5 and 6.1 Hz, 1*H*, H-1²), 5.09 (ddd, 1*H*, 2.0, and N0.3 Hz, J = 16.4, H-3²), 5.15 (ddd, J = 10.1, 2.0, and N0.2 Hz, 1*H*, H-3²), 5.72 (ddd, J = 16.4, 10.1, and 9.4 Hz, 1*H*, H-2²); ¹³C NMR δ 0.06 [q, Si(CH₃)₃], 14.2 (q, SCH₃), 20.3 (t, C-1¢), 28.6 (t, C-4), 41.8 (d, C-3), 45.5 (d, C-5), 50.9 (d, C-2), 55.2 (d, C-1²), 86.2 (s, C-1¢), 104.2 (s, C-2¢), 117.8 (t, C-3²), 135.6 (d, C-2²), 217.3 (s, C-1); mass spectrum calculated for C₂₁H₃₄OSSi (M⁻⁺) m/z 390.1868; found: 390.1867.

7.1.1.7. (2R, 3R, S_s)- and (2S, 3R,

S_s)-3-(6-Methoxy-2-naphthyl)-2-methyl-2-(4-methylphenyl)sulfinylcyclopentan one (Conjugate Addition of a Grignard to an Activated Enone Involving Asymmetric Induction) (192)

A flame-dried, 25-mL, 2-necked, round-bottomed flask fitted with serum cap, 3-way stopcock, and magnetic stirring bar and containing 5 mL of anhydrous THF was charged with 6-methoxy-2-naphthylmagnesium bromide (300 mL, 0.54 mmol) and cooled to -78° . After the Grignard reagent had cooled, (*S*)-[(4-methylphenyl)sulfinyl]-2-cyclopenten-1-one (107 mg, 0.49 mmol) in 2 mL of THF was added dropwise via syringe. After 20 minutes at -78° , the cold bath was removed to allow warming to room temperature. The THF was removed under reduced pressure (20 mm Hg) at 20°. The resultant semisolid was treated sequentially with methyl iodide (5 mL) and dry *N*-methylpyrrolidinone (4 mL). The homogeneous reaction mixture was stirred at room temperature overnight (20°, 12 hours). The crude product was concentrated under vacuum (20 to 0.1 mm Hg) and purified by preparative TLC (SiO₂, 20 cm × 20 cm × 1500 mm, 1:1:1 pentane/ether/methylene chloride, R_f 0.33) to give a 2:1 mixture of (2*R*, 3*R*,

- S_s)-cis-3-(6-methoxy-2-naphthalenyl)-2-methyl-2-[(4-methylphenyl)sulfinyl]cycl opentanone and (2S, 3R,
- S_s)-3-(6-methoxy-2-naphthalenyl)-2-methyl-2-[(4-methylphenyl)sulfinyl]cyclop entanone (149 mg, 78%) as a semisolid. ¹H NMR (CDCl₃) δ 0.99 (s, 2H), 1.2 (s, 1H), 2.40 (s, 3H), 1.8–3.90 (br m, 5*H*), 3.95 (s, 3*H*), 7.0–8.1 (m, 10*H*); IR (CHCl₃), 1730 (s), 1601 (s), 140 (s). Anal. Calc. for $C_{29}H_{29}O_3S$: C, 73.44; H, 6.16; S, 8.17. Found: C, 73.50; H, 6.19; S, 7.91.
- 7.1.1.8. Methyl (±)-(Z)-1 α ,2 β -7-(Ethenyl-5-oxocyclopentyl)-5-heptenoate (Conjugate Addition of a Higher-Order Cuprate, Trapping of the Conjugate Enolate as the Silyl Enol Ether, and α -Alkylation Mediated by a Transition Metal Catalyst) (86)
- [(3-Ethenyl-1-cyclopenten-1-yl)oxy]trimethylsilane was prepared by the method of Lipshutz, Wilhelm, and Kozlowski (345a) using CuCN (2.60 g, 30 mmol) azeotropically dried with 15 mL of toluene at room temperature under vacuum, 25 mL (60 mmol) of 2.4 M vinyllithium, 1.3 mL (1.27 g, 15 mmol) of 2-cyclopenten-1-one, and trimethylsilyl chloride (6.3 mL, 5.43 g, 50 mmol); yield 2.35 g (86%), bp 33–35° (0.15 mm); IR (neat) 1640 (s), 1345 (s), 1265 (s), 1250 (s), 1230 (s), 930 (s), 910 (s), 850 (br s) cm⁻¹; 1 H NMR (CDCl₃, Me₄Si) δ 0.20 (s, 9*H*), 1.2–2.5 (m, 4*H*), 3.0–3.4 (m, 1*H*), 4.5–5.1 (m, 3*H*), 5.5–6.0 (m, 1*H*). 13 C NMR (CDCl₃, Me₄Si) δ 0.45, 28.46, 32.90, 48.50, 104.33, 111.57, 143.25, 155.48. No 13 C NMR signals assignable to the stereoisomer were detected. Its purity by GLC was ~97%.
- To a solution of 0.36 g (2 mmol) of [(3-ethenyl-1-cyclopenten-1-yl)-oxy]trimethylsilane in 5 mL of THF was added dropwise 1 mL (2.4 mmol) of 2.4 M n-C₄H₉Li at 0°. After 10 minutes the

mixture was cooled to -78° , and 4 mL (4 mmol) of 1 M B(C₂H₅)₃ in THF was added. The resultant mixture was warmed to 0° over 20 minutes, and a solution of 0.40 g (2 mmol) of methyl (Z)-7-acetoxy-5-heptanoate and 0.02 g (0.02 mmol) of Pd[P(C₆H₅)]₄ in 5 mL of THF was added. After the mixture had been stirred for 2 hours at room temperature, it was quenched with 12 mL of 3 N HCl and extracted with 3 × 10 mL ether. The extract was washed with aqueous NaHCO3, dried over MgSO4, concentrated, and passed through a silica gel column (60-200 mesh, n-hexane) to remove Pd compounds. Concentration and distillation gave 0.33 g (66%) of methyl (±)-(Z)-1 α ,2 β -7-(ethenyl-5-oxocyclopentyl)-5-heptenoate: bp 120-123°C (0.2 mm Hg); IR (neat) 1730 (unresolved bands, s), 1640 (w), 1430 (m), 1155 (s), 985 (m), 910 (m) cm⁻¹; ¹H NMR (CDCl₃) δ 1.1–2.8 (m, 14*H*), 3.6 (s, 3*H*), 4.9–5.5 (m, 4*H*), 5.6–6.1 (m, 1*H*); ¹³C NMR (CDCl₃) δ 24.59, 26.32, 27.31, 32.88, 37.09, 45.71, 50.71, 53.92, 114.60, 127.09, 130.05, 140.84, 172.70, 216.34. The purity of the product by GLC was ~90% with one unidentified signal having a shorter retention time.

8. Tabular Survey

8.1. Introduction and Guide to Tables

The tabular survey covers examples abstracted from the literature from 1959 through 1986 and is organized according to whether the difunctionalization is a direct sequence with conjugate enolate α -functionalization proceeding in situ (a "one-pot" sequence, Tables I–III) or is an indirect sequence, proceeding through a neutral intermediate conjugate enolate equivalent (a "two-pot" sequence, Tables IV and V). Each table is organized according to the type of α , β -unsaturated carbonyl substrate used (ketones, aldehydes, esters, or amides; cyclic or acyclic) and the number of carbons in the substrate. Aldehydes, ketones, and amides are listed according to total carbon count; carboxylic esters in Tables II and V are listed according to the carbon count of the parent carboxylic acid. Substrates are classified as cyclic only if they are named as 2-cycloalkenones; otherwise, they are considered acyclic.

Identities of the Michael donor, or nucleophilic reagent, and the enolate quenching reagent are listed along with general conditions of the reaction sequence. The conditions indicated should not be considered to be in sufficient detail for duplication of the reaction; the reader is advised to refer to the original experimental details of the reference(s) to determine how the sequence should be performed.

Stereochemical information for the reactants and the products is provided when available, and generally the yields recorded are isolated chemical yields of the products for the entire reaction sequence. Reactions are run in diethyl ether unless noted otherwise, and temperatures are reported in degrees Celsius.

The following abbreviations have been used to facilitate tabulation of the data:

A proton-quenched adduct isolated as neutral

intermediate

acac acetylacetonate

B enol acetate isolated as neutral intermediate

cat. catalytic amount

DBU 1,8-diazabicyclo[4.3.0]undec-7-ene

DMAP 4-(dimethylamino)pyridine

DME 1,2-dimethoxyethane
DMF *N,N*-dimethylformamide

DMS dimethyl sulfide

DMSO dimethyl sulfoxide

eq equivalents

g gas

HMPA hexamethylphosphorictriamide

l liquid

LDA lithium diisopropylamide

LHMDS lithium 1,1,1,3,3,3-hexamethyldisilazide

LTMP lithium isopropylcyclohexylamide LTMP lithium 2,2,6,6-tetramethylpiperidide

m-CPBA *m*-chloroperbenzoic acid NMP *N*-methylpyrrolidinone

[O] oxidationOAc acetoxy

rt room temperature

TASF tris(dimethylamino)sulfonium

difluorotrimethylsiliconate

TBAF tetrabutylammonium fluoride

TBDSO tert-butyldimethylsilyloxy

THF tetrahydrofuran
THP 2-tetrahydropyranyl

TMEDA N, N, N¢, N¢-tetramethylethylenediamine

Ts *p*-toluenesulfonyl X unspecified halogen

Table I. α , β -Unsaturated Aldehydes and Ketones

View PDF

Table II. α , β -Unsaturated Esters and Lactones

Table III. α , β -Unsaturated Amides and Thioamides
View PDF
ole IV. α , β -Unsaturated Ketones via Neutral Intermedia
View PDF
able V. α , β -Unsaturated Esters via Neutral Intermediate
able V. α, β-Unsaturated Esters via Neutral Intermediate
View PDF
View PDF Table VI. Miscellaneous Substrates
Table VI. Miscellaneous Substrates

Table II. Esters and Lactones—Addenda

View PDF
Table V. Fatara - Addanda
Table V. Esters—Addenda

Carbo:	n α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Sectio	n A: Acyclic Substrate	es	41.00		
3	CH₂=CHCHO	(C ₂ H ₅ O ₂ C) ₂ CHBr,	Intramolecular	C ₂ H ₅ O ₂ C	216
5	Chi2-Chichio	NaOC ₂ H ₅ , C ₂ H ₅ OH,		(70)	
				بُلِّ	
4	CH₂=CHCOCH₃	(CH ₃) ₂ CuLi, (n-C ₃ H ₇) ₂ O, 1 h (CH ₃) ₃ Si	CH ₃ COCl, n, l h	(30) COCH ₃	272
		Li, THF,			
		(CH ₃)₂S [†] I ⁻ -30° to 15°	Intramolecular	(65) OH	157
				ج الم	
		(n-C ₄ H ₉) ₂ CuLi, -78°	CH ₃ CHO, 0°, ZnCl ₂	n-C ₄ H ₉ (92)	220
				()	
				OH O	
		(n-C ₄ H ₉) ₂ CuLi, -78°	C ₂ H ₅ CHO, 0°, ZnCl ₂	n-C ₄ H ₉	220
				(65) O O	
				C ₆ H ₅	
		$(n-C_4H_9)_2$ CuLi * $(n-C_4H_9)_3$ P, -78°, 1 h	C _e H ₅ COCl, HMPA	n-C ₄ H ₉ (52)	112
				$C_{g}H_{g}$	
		(n-C ₄ H ₉) ₂ CuLi [*] (n-C ₄ H ₉) ₃ P, -78°, 30 min	C ₈ H ₅ COCl, HMPA	n-C ₄ H ₉ (52)	284
		-70 , 30 mm		он о I II	204
		(CH) AISC H	CH CHO THE	SC ₈ H ₅	204
		(CH3)2 AISC ₆ H ₅ , CH2Cl2, -78°	СН₃СНО, ТНБ	(60)	204

Product(s) and Yield(s) (%) Carbon Nucleophilic Reagent Electrophilic Reagent α , β -Unsaturated Ref. and Conditions and Conditions No. Substrate Section A: Acyclic Substrates SeCH₃ 204 CH₃CHO, THF (CH₃)₂AlSeCH₃, (55)CH₂Cl₂, -78° 205 (CH₃)₃SiSeC₆H₅, 1) C₆H₅CH(OCH₃)₂ (57)cat. (CH₃)₃SiO₂CCF₃, CH₂Cl₂, -78° 2) [O] OC₂H₅ 205 1) HC(OC₂H₅)₃ (CH₃)₃SiSeC₆H₅, (53)cat. (CH₃)₃SiO₂CCF₃, CH₂Cl₂, -78° 2) [0] OH COCH₃ SC H 145 i-C₃H₇CHO C6H5SMgI, (100)(C₂H₅)₂O, hexane, 0° COCH₃ C2H5O2C C2H5O2C (C2H5O2C)2CHBr, Intramolecular 216 NaOC2H5, C2H5OH, (77)COCH₃ , THF, Intramolecular 138 (81) COCH₃ , THF, Intramolecular 138 (70)COCH₃ , THF, 138 Intramolecular -78° (70)

299

C	Carbon α, β-Unsaturated No. Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
5	Section A: Acyclic Substrates	5			411-
		Si(CH ₃) ₃ $=C = \left\langle \begin{array}{c} Si(CH_3)_3 \\ \\ TiCl_4, CH_2Cl_2, -78^{\circ} \end{array} \right.$	Intramolecular	CH ₃ CO Si(CH ₃) ₃ (68-75)	2:
		Si(CH ₃) ₃ C= TiCl ₄ , CH ₂ Cl ₂ , -78°	Intramolecular	CH ₉ CO Si(CH ₉) ₉ (80)	2
		S Li CO ₂ C ₂ H ₅ , THF, HMPA, -78°	CH₂O, -78°	COCH ₂ CH ₂ OH (71)	2
		C ₆ H ₅ SC(CH ₃)LiCO ₂ CH ₃ , THF, HMPA, -78°	CH₂O, -78°	C ₆ H ₆ S CO ₂ CH ₃	2
		Co ₂ CH ₃ S Li CO ₂ CH ₃ THF, HMPA, -78°	CH₂O, -78°	HOCH ₂ COCH ₃ CO ₂ CH ₃ SC ₆ H ₅	:
		(CH ₃) ₃ SiCH ₄ CH ₂ O ₂ CCH ₃ , Pd[P(C ₆ H ₅) ₃] ₄ , toluene, 78°	Intramolecular	COCH ₃	9
		OLi OLi	1) (C ₆ H ₅) ₃ B 2) CH ₂ =CHP(C ₈ H ₅) ₃ Br	COCH₃ (21) CHO	
	trans-CH₃CH=CHCHO	(C ₂ H ₅ O ₂ C) ₂ CHBr, NaOC ₂ H ₅ , C ₂ H ₅ OH, 5°, overnight	Intramolecular	C ₂ H ₈ O ₂ C C ₂ H ₈ O ₂ C (57)	;

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	A: Acyclic Substrate	s			
5	CH₂=CHCOC₂H₅	S Li CO ₂ C ₂ H ₅ THF, HMPA, -78°	CH ₂ O, -78°	HOCH ₂ COC ₂ H ₅ S CO ₂ C ₂ H ₅ (79)	22
		Co ₂ CH ₃ CH ₂ C ₆ H ₅ CO ₂ CH ₃ THF, HMPA, -78°	CH ₂ O, -78°	HOCH ₂ COC ₂ H ₅ C ₆ H ₅ CH ₂ CO ₂ CH ₆ (51) HOCH ₂ COC ₂ H ₅	22
		C ₈ H ₅ SC(CH ₃)LiCO ₂ CH ₃ , THF, HMPA, -78°	CH ₂ O, -78°	CO ₂ CH ₃ COC ₂ H ₅ CO ₂ CH ₃ CO ₂ CO ₂ CH ₃ CO ₂	22
		OLi	1) (C ₂ H ₅) ₃ B 2) CH ₂ =CHP(C ₆ H ₅) ₃ Br	COC ₂ H ₅	1
		OLi OLi	1) (C ₂ H ₅) ₃ B 2) CH ₂ =CHP(C ₈ H ₅) ₃ Br	(35)	1
		OLi OLi		COC ₂ H ₅ (37) O	14
	(E)-CH₃CH=CHCOCH₃	[C ₆ H ₅ (CH ₉) ₂ Si] ₂ CuLi, THF, -23°	CH₃I, HMPA	C ₂ H ₃ (CH ₃) ₂ Si (72)	6
		(CH ₃) ₂ CuLi, 0°	CH₃I, DME	(46)	22

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section	A: Acyclic Substrates	5			
304			(CH ₃) ₂ CuLi, -78°	C₀H₀CHO, ZnCl₂	threo:erythro, 0.8:1	220
			Si(CH ₃) ₃ $=C = \int_{TiCl_4, CH_2Cl_2, -78^\circ}^{Si(CH_3)_3}$	Intramolecular	Si(CH ₃) ₃	214
			C ₂ H ₅ MgBr, CuCl, (-)-sparteine	Self	(27)	18
		CH ₂ =C=CHCOCH ₃	(CH ₃) ₂ CuLi, -15°	CH₃I, DME, -30°) (-)	255
			S Li CO ₂ C ₂ H ₅ , THF, HMPA, -78°	CH ₂ O, −78°	HO S CO ₂ C ₂ H ₆ (47)	222
305			(CH ₃) ₂ CuLi, −15°	BrCH ₂ CH=C(CH ₃) ₂ , DME, -30°	(-)	255
	6	CH ₂ =CHCOC ₃ H ₇ -n	S Li CO₂C₂H₅, THF, HMPA, -78°	CH₂O, -78°	HOCH ₂ COC ₃ H ₇ -n S CO ₂ C ₂ H ₅ (54)	222
	(E	°)-CH ₃ CH=C(CH ₃)COCH ₃	(CH ₃) ₂ CuLi, 0°	CH₃I, DME	(64)	221

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section	A: Acyclic Substrate	s			
306		(CH ₃)₂C=CHCOCH ₃ ^a	(CH ₃)₂CuLi, 0°	CH₃I, DME	OH OH	221
			(CH ₃) ₂ CuLi, -78°	CH₃CHO, 10 eq ZnCl₂	threo (96)	220 234
			(CH ₃)₂CuLi, -78°	CH₃CHO, 1 eq ZnCl₂	threo (77)	220
			(CH ₃) ₂ CuLi, −78°	C₂H₅CHO,	threo:erythro, 7.4:1 (50)	220
			(CH ₃)₂CuLi, 0°	ZnCl₂ C ₈ H ₅ CHO, ZnCl₂	threo:erythro, 1.0:1	220
307					"	
			(CH ₃) ₂ CuLi, -78°	C ₆ H ₅ CHO, ZnCl₂	threo:erythro, 2.0:1 (66) OH O p-CH ₃ OC ₆ H ₄	220
			(CH ₃) ₂ CuLi, -78°	p -CH $_{3}$ OC $_{6}$ H $_{4}$ CHO, ZnCl $_{2}$	threo:erythro, 0.2:1 (34)	220

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	A: Acyclic Substrate	S			
		(CH ₉) ₂ CuLi, 0°	p−CH₃OC ₈ H₄CHO, ZnCl₂	threo:erythro, 1.8:1 (46)	22
		(n-C ₄ H ₉) ₂ CuLi, 0°	C ₂ H ₆ CHO, ZnCl ₂	oh o $n - C_4H_9$ threo: erythro, 2.5:1	22
		(n-C ₄ H ₉) ₂ CuLi, -78°	C ₂ H ₅ CHO, ZnCl ₂	threo:erythro, 5.5:1 (52) QH Q	22
		(n-C ₄ H ₉) ₂ CuLi, −78°	C₂H₅CHO, ZnCl₂	C_6H_6 $n-C_4H_9$ threo:erythro, 0.8:1 (85)	22
		OSi(CH ₃) ₃ TiCl ₄ , CH ₂ Cl ₂ , -78° to -40°	Intramolecular	H 0 +	29
				H 0 +	-
				H O H O	

Product(s) and Yield(s) (%) Nucleophilic Reagent and Conditions Electrophilic Reagent and Conditions Carbon α , β -Unsaturated Ref. No. Substrate Section A: Acyclic Substrates (E)-i-C₃H₇CH=CHCOCH₃ (E)-i-C₃H₇CH=CHCOCH₃, Intramolecular Ba(OH)2 (-)126 (CH) P Intramolecular 171 (-) 25° CH₂=CH, Cu(SC, H,)Li 180°, Intramolecular 121 (77)COCH₃ COCH₃ CH3OCH2O OCH2OCH3, 218 Intramolecular (65-70)THF, -70° COCH₃ 218 Intramolecular THF, -70° (27)COCH₃ 218 Intramolecular (68) THF, -22° COCH₃ 218 Intramolecular (32)THF, -22°

Nucleophilic Reagent and Conditions Electrophilic Reagent and Conditions Product(s) and Yield(s) (%) Carbon β-Unsaturated Ref. No. Substrate Section A: Acyclic Substrates COCH₃ Intramolecular 218 THF, -22° COCH₃ Intramolecular 218 THF, -22° COCH, Li CH₃CO 218 Intramolecular THF, -70° (62)(CH₃)₃Si COCH COCH₃ Si(CH₃)₃ (CH₃)₂S₁I_ Intramolecular 157 THF, -30° to 15° (40)CH₃O₂C Cu(CH₃)Li Intramolecular 110 Si(CH₃)₃ Si(CH₃)₃ 315 , TiCl4, Intramolecular 214 CH₂Cl₂, -78° (91) COCH, COCH₃ OCH₃ CH3OCH2O OCH2OCH3, Intramolecular 218 THF, -70° (28)TsCH2CN, cat. Intramolecular 188 CN (53) NaOC₂H₅, C₂H₅OH

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	A: Acyclic Substrates	3			
9	trans-C ₆ H ₅ CH=CHCHO	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ CuLi	CH₃I	H C ₆ H ₅ Si(CH ₃) ₂ C ₆ H ₅ threo:erythro, 12:1	10
	20 5			(74)	
	CH₂=CHCOC ₆ H ₅	=C=\si(CH ₃) ₃ TiCl ₄ , -78° CH ₂ Cl ₂	Intramolecular	C ₆ H ₅ Si(CH ₃) ₃	21
		OLi OLi	1) (C ₂ H ₅) ₃ B 2) CH ₂ =CHP(C ₆ H ₅) ₃ Br	COC ₆ H ₅	14
	C ₆ H ₅ C≣CCOCH ₃	1) (CH ₃) ₂ CuLi, -80° 2) CH ₃ Li, -80°	I ₂	COCH ₃ C ₆ H ₅ COCH ₃ 62:38 cis:trans (-)	2
10	(E)-C ₆ H ₅ CH=CHCOCH ₃	^{,a} [C ₆ H ₅ (CH₃)₂Si]₂CuLi	СН₃І	C ₆ H ₅ Si(CH ₆) ₂ C ₆ H ₅ threo:erythro, 49:1 (57))
		(CH ₃)₂CuLi, -78°	CH₃CHO, ZnCl₂	OH O (83)	2
		(CH ₉)₂CuLi, 0°	CO ₂ (g), rt	HO ₂ C O O O O O O O O O O O O O O O O O O O	2
		(CH ₉) ₂ CuLi, 0°	C₂H₅O₂CH	OHC C ₆ H ₅ (84)	2

Carbon α, β-Unsaturated No. Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A: Acyclic Substrate	es			
	(CH ₃) ₃ SiCH ₂ CH ₂ O ₂ CCH Pd[P(C ₆ H ₅) ₃] ₄ , THF, reflux	l _o , Intramolecular	C ₈ H ₅ COCH ₃	2
(E)-n-C ₈ H ₁₉ CH=CHCOCH ₃	[C ₈ H ₅ (CH ₃) ₂ Si] ₂ CuLi	CH₃I	n-C ₆ H ₁₃ Si(CH ₃) ₂ C ₆ H ₅ threo:erythro, >19:1 (78)	10
(E)-CH ₃ CH=CHCOC ₆ H ₅ ^a	(CH ₃) ₂ CuLi, -40°	C_6H_5SeBr , $(C_6H_5)_2Se_2$	C ₆ H ₅ SeC ₆ H ₅ (83) C ₆ H ₅ Se COC ₆ H ₅	34 34
	LDA, THF, 0°	C ₆ H ₆ SeBr	(48)	20
онс 🗸				
CH₃CO	1) cat. NaOCH ₃ , CH ₃ OH 2) NaOCH ₃	Intramolecular	6	ŝ
	кон, сн₃он	Intramolecular	2:1 trans:cis (-)	2
	LіОН, СН₃ОН	Intramolecular	2;1 trans:cis (-)	2
	1) Zr(OC ₃ H ₇) ₄ ,. C ₈ H ₈ , n, 1 h 2) LiOH, CH ₃ OH 3) DMAP, CH ₂ Cl ₂ ,	Intramolecular	40:1 trans:cis (90)	3

Carbon α No.	, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A:	Acyclic Substrates	3			
بُ	O CH2CH2CCH=CH2			C ₂ H ₆	
11		(CH ₃) ₂ CuLi, −78°	Intramolecular THF/HCl, reflux	(88)	3
Ċ	SC ₄ H ₉ -n	(CH ₃) ₂ CuLi, 0°	CH₃I, DME	SC ₄ H ₉ -n (86)	22
(E)−CH ₃ (CH=CHCOCH₂C ₈ H ₅	(CH ₃) ₂ CuLi, -78°	CH₃CHO,ZnCl₂	OH OC C ₆ H ₅ mixture of isomers (91)	22
	∕ (CH ₂) ₃ COCH ₃	(CH ₃) ₂ CuLi, -60°, 90 min; then 0°, 60 min	Intramolecular	OH (-)	3
Ů	СН³)³сно	(CH ₃) ₂ AlSC ₈ H ₅ , CH ₂ Cl ₂ , -78°, 15 min	Intramolecular	C _e H _s S O OH (94)	2
		(CH ₃) ₃ SiC≡CCH ₂ MgBr, cat. CuBr • DMS, THF, (C ₂ H ₅) ₂ O, -78°, 5 h; -78° to 0°, 2 h; then 0°, 15 min	СН₃І, НМРА	(CH ₂) ₂ C≡CSi(CH ₃) ₃ O (40)	3
		(CH ₃) ₃ SiC≡CCH ₂ MgBr, CuBr • DMS	CH₃I, HMPA	" (-)	3

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	A: Acyclic Substrate	s			
		Si(CH ₃) ₃ MgBr, cat. CuBr • DMS, -78°, 5 h; -78° to 0°, 2 h; then 0°, 15 min	CH₃I, HMPA, rt	Si(CH ₃) ₃ O (37)	31
		Si(CH ₃) ₃ MgBr, CuBr • DMS	CH₃I, HMPA	(40)	3.
		(E)-(CH ₃) ₃ SiCH=CHMgBr, cat. CuBr • DMS, -78°, 5 h; -78° to 0°, 2 h; then 0°, 15 min	СН₃І, НМРА	Si(CH ₃) ₃ (66)	31
		(E)−(CH ₃) ₃ SiCH=CHMgBr, CuBr • DMS	СН₃І, НМРА	(66)	35
12	SC ₄ H ₉ -n	(CH₃)₂CuLi, 0°	CH₂I, DME	SC ₄ H ₉ -n	22
		(CH ₃)₂CuLi, 0°	i−C₃H₁I, DME	SC ₄ H ₉ -n	2:
		(CH₃)₂CuLi, 0°	CH₂=CHCH₂Br, DME	SC ₄ H ₉ -n	2:
		(CH ₃) ₂ CuLi, 0°	i−C₄H ₉ I, DME	SC ₄ H ₉ -i SC ₄ H ₉ -n (64)	2

	Carbon α , β -Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section A: Acyclic Substrate	S			
PCE		(CH ₃)₂CuLi, 0°	Br ₂ , C ₆ H ₆ -40° to 0°	(99)	308
	онс о о о о о о о о о о о о о о о о о о	LiOH, СН₃ОН	Intramolecular	H 4:1 trans:cis (-)	293
		Mg(OCH₃)₂, CH₃OH	Intramolecular	12:1 trans:cis (-)	293
		Ca(OCH₃)₂, CH₃OH	Intramolecular	10:1 trans:cis (-)	293
		Ba(OH) ₂ , CH ₃ OH	Intramolecular	4:1 trans:cis (-)	293
306		Zr(OC ₃ H ₇) ₄	Intramolecular	25:1 trans:cis (-)	293
	15 (E)-C ₈ H ₆ CH=CHCOC ₈ H ₅ ^a	[C ₈ H ₅ (CH ₃) ₂ Si] ₂ CuLi	СН₃І	C ₆ H ₅ C ₆ H ₅ Si(CH ₃) ₂ C ₆ H ₅ threo (70)	102
		CH₃MgI	Self	C_6H_5 C_6H_5 C_6H_5 C_6H_5 C_6H_5	19

	TABI	LE I. α,β-UNSATURATED A	ALDEHYDES AND KETONES	(Continued)	
Carbon α, β- No. Si	Unsaturated bstrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	ef
Section A: Acy	clic Substrates				
		OLi	CH₂=CHP̈(C₅H₅)₃Br¯	COC ₆ H ₅ C ₆ H ₅ (35)	14:
) ₃ SiCH ₂ CH ₂ COCH ₃ , [P(C ₆ H ₅) ₃] ₄ , toluene, 115°	Intramolecular	C ₈ H _s COC _e H _s (85)	21:
16 Br	CO ₂ CH ₃	O Li [†] , -78°,	Intramolecular	CH ₃ O ₂ C Br HO (25)	357
				CH ₃ O ₂ C	
17 CH₃O₂C	L _{Br}	o Li [†]	Intramolecular	Brun (30)	14
H OSi(C	CH ₃) ₂ C ₄ H ₉ −t [Cl	H₂=CH(CH₂)₃]₂CuLi, DMS, (C₂H₅)₂O, THF	CH ₉ I	OSi(CH ₉) ₂ C ₄ H ₉ -t CHO (33)	21

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions		Ref.
	Section A	: Acyclic Substrates	s			
	18 C ₆	,H ₆	(C ₆ H ₅) ₃ P=CH ₂ , rt; xylene, 120°	Intramolecular	(41) C ₆ H ₆	172
328	23 CH ₉ O ₂		CH ₃ MgX, THF, 9 mol % Cu(O ₂ CCH ₃) ₂	CH₃I, reflux	CH ₃ O ₂ C (70)	-0 Jun 78
			C ₆ H ₅ CH ₂ MgX, THF, 9 mol % Cu(O ₂ CCH ₃) ₂		CH ₃ O ₂ C (43)	CH₂C ₈ H ₅
	25	CO ₂ C ₂ H ₆	CH₃Li, THF, -78° to 25°	n−C ₄ H ₉ I	n-C ₄ H ₉ CO ₂ C ₂ H ₅ P(C ₉ H ₅) ₃ (83)	197
			CH ₂ =CHLi, THF, -78° to 25°	СН₃І	CO ₂ C ₂ H ₅ P(C ₆ H ₅) ₃ (90)	197
329			Li S S , THF, -78° to 25°	CH₃I	$ \begin{array}{c c} S & CO_2C_2H \\ & & \\ S & P(C_6H_5)_3 \end{array} $	197
			t-C₄H ₉ O ₂ CCH ₂ Li, THF, -78° to 25°	CH₃I	CO_2C_2H $P(C_0H_5)_3$ $t-C_4H_9O_2C$ (72)	197

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	A: Acyclic Substrate	s			
		n−C ₄ H ₉ Li	CH ₉ I	n-C ₄ H ₉ CO ₂ CH ₃ P/C ₆ H ₅) ₃ (95)	198
		Li	CH ₃ I	CO ₂ C ₂ H ₅ P(C ₆ H ₅) ₃ (71)	198
26	CO ₂ C ₂ H ₅	C ₆ H ₅ Li, THF, -78° to 25°	С₅Н₅СНО	OH O CO ₂ C ₂ H ₅ C ₆ H ₅ P(C ₆ H ₅) ₃ 1 isomer (92)	197
		C _e H _s Li	C₂H₅I	$C_{g}H_{5}$ $C_{$	198
27 ⁴	CO 2 C2 H6	CH₃Li, THF, -78° to 25°	CH³I	P(C _g H ₆) ₃ mixture of isomers (84)	197
	CO ₂ C ₄ H ₆ -t	n-C₄H ₉ Li, THF, -78°	CH₃I	n-C ₄ H ₉ CO ₂ C ₄ H ₉ -t P(C ₆ H ₈) ₃ (96)	199
		n-C₄HgLi, THF, -78°	n-C ₆ H ₁₁ I, rt	$n-C_0H_{11}$ $CO_2C_4H_0-t$ $n-C_4H_0$ $P(C_6H_6)_3$ (83)	199

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	A: Acyclic Substrate	s			
		S S S THF,	CH₃I	CO ₂ C ₄ H ₆ -t P(C ₆ H ₆) ₃ (84)	19
		C ₆ H ₅ Li, THF, -78°	n−C₃H ₇ I	CO ₂ C ₄ H ₉ -t P(C ₆ H ₅) ₅ (98)	19
28 ^a	CO ₂ C ₄ H ₉ -t	C ₈ H ₅ Li, THF, -78°	C ₈ H ₆ CH ₂ Br	C ₆ H ₅ C ₆ H ₆ C ₆ H ₆ C ₆ H ₆ (84)	19
	o	n-C₄H ₉ Li, -78°, THF	C ₆ H ₅ CH ₂ Br	$C_{g}H_{5}$ $CO_{2}C_{4}H_{g}-t$ $P(C_{g}H_{5})_{3}$ (98)	199
a.	CO ₂ C ₂ H ₆	CH₃Li, THF, −78°	Intramolecular	CO ₂ C ₂ H ₅ P(C ₆ H ₅) ₃ (82)	353
		C ₆ H ₅ Li, THF, -78°	Intramolecular	$CO_{2}C_{2}H_{5}$ $P(C_{6}H_{5})_{3}$ (90)	353
		t-C ₄ H _e Li, THF, -78°	Intramolecular	$CO_{2}C_{2}H_{5}$ $CO_{2}C_{2}H_{5}$ $C_{4}H_{9}-t$ (72)	353

Carbo No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Sectio	n A: Acyclic Substrate	es		4	
3		(C ₆ H ₅ S) ₂ CHLi, THF, −78°	Intramolecular	CO ₂ C ₂ H ₅ P(C ₆ H ₅) ₃ CH(SC ₆ H ₆) ₂ (95)	35:
	t-C₄H ₉ O ₂ CCH ₂ Li, THF, -78°	t-C ₄ H ₉ O ₂ CCH ₂ Li, THF, -78°	Intramolecular	CO ₂ C ₂ H ₆ P(C ₆ H ₅) ₃ CH ₂ CO ₂ C ₄ H ₆ -t (90)	35
	Fe oc P(C ₆ H ₅) _a	C ₈ H ₅ Li	CH₃I	Fe C _e H ₅ 30:1 threo:erythro (93)	200 35
		C ₆ H₅CH₂NHLi	СН₃І	OC Fe NHCH ₂ C _e H ₅ 24:1 three:erythro	20
				OC Fe NHCH, CeH	
		C ₆ H ₅ CH ₂ NHLi	C₂H₅I	20:1 threo:erythro (99)	20 35
		C₅H₅CH₂NHLi	C ₂ H ₆ CH ₂ Br	CH ₂ C ₆ H ₅ OC Fe OC (C ₆ H ₅) ₃ P NHCH ₂ C ₆ H 15:1 threo:erythro (99)	5 20 35
				OC Fe NHCH, C, H	
		C ₆ H ₅ CH ₂ NHLi	∕ Br	30:1 threo:erythro (92)	20 3:

Carbon No.	α , β -Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	A: Acyclic Substrates				
		n−C₃H7NHLi	CH₃I	Fe OC NHC ₃ H ₇ n 10:1 threo:erythro (53)	35
		n−C ₄ H ₉ Li	CH³I	OC Fe C ₄ H ₉ -n	22:
	OC Fe P(C ₆ H ₆) ₃	n-C₄H ₉ Li, THF	CH³I	$C_{4}H_{9}-n$ (75)	35
		n-C₄H ₉ Li, THF	C₂H₅I	$OC \qquad P(C_6H_6)_3$ $Fe \qquad C_4H_6-n$ O O	35
29 ^a n-0	٩	C ₈ H ₅ Li, THF, -78° to 25°	C₂H₅I	C_2H_5 $n-C_4H_9$ C_8H_5 $CO_2C_2H_5$ $CO_2C_2H_5$ $CO_2C_2H_5$ $CO_2C_2H_5$ $CO_2C_2H_5$ $CO_2C_2H_5$ $CO_2C_2H_5$	19'
I/	P(C ₆ H ₆) ₃	C ₈ H ₅ Li, THF, −78°	Intramolecular	CO ₂ C ₂ H ₅ P(C ₆ H ₅) ₃ C ₆ H ₅ (79)	35
CI~	CO ₂ C ₂ I	H _s C _e H _s Li, THF, −78°	Intramolecular	" (70)	35

(-)

^a See addendum to Table IA for additional entries.

No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B	: Cyclic Substrates			51-51-51-51-51-51-51-51-51-51-51-51-51-5	
				CH ₉ S O SCH ₉	
		C₁H₁₅− <i>n</i>	1) O=SCH ₃	но	
	(сн _а -78°	O×O√_/)₂ CuLi,	2) H ₂ O ⁺	 C ₇ H ₁₆ -n (51)	3
				O II SCH₃	
		n-C ₆ H ₁₃ MgBr, 2 mol % CuI, -30°	O II CH ₃ SCI	C ₆ H ₁₃ -n (53)	3
				O IIII CH₂C≡CC₂H₅	
		(CH ₂ =CHCH ₂) ₂ CuLi, THF, -78°	C ₂ H ₅ C≡CCH ₂ I, TMEDA/HMPA	CH ₂ CH=CH ₂ (60)	
				o	
				<u></u>	
		Li L		CN C ₆ H ₄ OCH ₃ -p	
		p-CH ₃ OC ₈ H ₄ CN, 4/1 THF/HMPA, -70°	CH₃I	3:2 trans:cis (80)	
		Li 		CN C ₈ H ₅	
		C ₈ H ₅ CN, 4/1 THF/HMPA, -70°	CH₃I	3:2 trans:cis (80)	
				CN	
				C ₈ H ₈ (10)	

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B	3: Cyclic Substrates				
				<u> </u>	
				CN	
		C ₆ H ₅ Li CN,	СН₀І	C ₆ H ₅ 1:1 trans:cis	183
		4/1 THF/HMPA, -70°		о Ц	
				CH₂OH	
		(CH3)2AISC6H5, $CH2Cl2, -78°$	H₂CO, THF	SC _e H ₅ (56)	204
				ОН	
		(CH ₃) ₂ AISC ₆ H ₅ ,	n−C ₈ H ₁₇ CHO, THF	C ₈ H ₁₇ -n	204
		CH ₂ Cl ₂ , −78°		(76)	
				0	
			(SC ₈ H ₅	
	(n-C	$_{9}H_{7}C\equiv C)CuLi$ $C_{9}H_{11}-n$		C_5H_1-n	
		OSi(CH₃)₂C -78°	C_4H_9-t (C_6H_6) ₂ S_2 , THF/HMPA	OSi(CH ₃) ₂ C ₄ H ₉ -t (38)	119
				SC ₆ H ₅	
		C ₈ H ₅ SCuLi		C ₅ H ₁₁ -n	
		ОТНР	C ₈ H ₈ SCl, THF/HMPA	ŌTHP (24)	119
				CH³C≡C(CH³)CO⁵CH³	
		NC Li		C ₅ H ₁₁ -n	
	n-C	5 ₅ H ₁₁	H ₅ CH ₃ O ₂ C(CH ₂) ₃ C ≡ CCH ₂	$_{2}$ I NC OCH(CH ₃)OC ₂ H ₅ (≤20)	18
				i /	
				CO ₂ CH ₃	
	CI	Li H₃O₂CCHSi(C₅H₅)₂CH₃,	(Z)-C ₂ H ₅ CH=CHCH ₂ Br,	Si(C ₆ H ₅) ₂ CH ₃	318
		HMPA/THF, 0°	inverse addition, THF/HMPA	(56)	. = . = .

THF/HMPA

	Carbon α, I	β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section B: Cy	clic Substrates			262 W. 1.00 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	
346		c	Li 1 ₂ H ₅ O ₂ CCHSi(C ₆ H ₅) ₂ CH ₃ , HMPA/THF, 0°	(Z)-C ₂ H ₅ CH=CHCH ₂ Br, inverse addition, THF/HMPA	CO ₂ C ₂ H ₆ Si(C ₆ H ₆) ₂ CH ₃ (62)	31
			CO ₂ C ₂ H ₆ Li , THF,	CH₂=CHCH₂Br, HMPA/THF	CO ₂ C ₂ H ₃ (50)	12
			(CH₂=CHCH₂)₂CuLi	C ₂ H ₉ C≡CCH ₂ I	CH ₂ CH=CH ₂ (-)	316
			CH ₃ Cu(CH=CH ₂)Li, THF	CH ₂ =CHCH ₂ Br	CH=CH ₂ (69)	31
			(C _e H ₅) ₂ CuLi, THF	CH ₂ =CHCH ₂ Br	C ₆ H ₅ (67)	31
347			(C ₈ H ₅)₂CuLi, THF	CH ₂ =CHCH ₂ Br	CH ₂ CH=CH ₂ C ₀ H ₅ 7:93 trans:cis (72) CH ₂ CH=CH ₂	6
			CH ₂ =CHCu(CH ₃)Li, THF,	CH₂=CHCH₂Br	CH=CH ₂ 69:3 trans:cis (72)	11:

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section I	3: Cyclic Substrates				
		CH ₂ =CHCu(CH ₃)Li, THF, -78°	(E)-CH ₃ CH=CHCH ₂ I	CH=CH ₂ (34)	11
		CH ₂ =CHCu(CH ₃)Li, THF, -78°	I~—~~CO2CH3	CO ₂ CH ₃ CH=CH ₂ (10-20)	11
		CH ₂ =CHCu(CH ₃)Li, THF, -78°	n−C₄H ₉ I	CH=CH ₂ (31)	11
		CH ₂ =CHCu(CH ₃)Li, THF, -78°	C ₂ H ₆ O ₂ CCH ₂ Br	CH=CH ₂ (46:4 trans:cis) (50)	11:
		(C ₈ H ₅)₂CuLi	C₅H₅SeBr	SeC ₈ H ₈ C ₈ H ₈ (55)	34
		(CH ₃) ₃ SnLi, 1:2 THF/NH ₃ , -70°	n-C ₆ H ₁₁ I	Sn(CH ₃) ₃ (90)	20
		(CH ₃)₂CuLi, 0°	C ₆ H ₆ SCl	Q QCH ₃	182
		$(CH_3)_3SiSeC_8H_5$, cat. $(CH_3)_3SiO_2CCF_3$, CH_2Cl_2 , -78°	HC(OCH ₉) ₉	OCH ₃	205

Carbon No.	α , β -Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section 1	B: Cyclic Substrates				
		n-C ₄ H ₉ Cu, 2 eq (n-C ₄ H ₉) ₃ P, -78°	n−C₃H₁CHO	OH C ₃ H ₇ -n 1 isomer (98)	1-
		(**-04119)31, -70		OH C ₃ H ₇ -i C ₄ H ₉ -n	
		n-C ₄ H ₉ Cu, 2 eq (n-C ₄ H ₉) ₃ P, -78°	i-C₃H₁CHO	1 isomer (93)	1
		n-C ₄ H ₉ Cu, 2 eq (n-C ₄ H ₉) ₃ P, -78°	t-C₄HgCHO	OH C_4H_9-t C_4H_9-n 1 isomer (71)	14
		n-C ₄ H ₉ Cu, 2 eq (n-C ₄ H ₉) ₃ P, -78°	C ₆ H ₅ CHO	O OH C ₆ H ₆ C ₄ H ₉ -n mixture of isomers (91) O OH C ₆ H ₅	1
		n-C ₄ H ₉ Cu, 2 eq (n-C ₄ H ₉) ₃ P, -78°	(E)-C ₆ H ₆ CH=CHCHO	C ₄ H ₉ -n mixture of isomers (94)	1
		(CH ₃) ₂ CuLi, 0°	CH₃O₂CCI	OCO ₂ CH ₃ CO ₂ CH ₃ (56)	27
		(n-C ₄ H ₉) ₂ CuLi, -30° to -10°	CH₃O₂CCI	C ₄ H ₉ -n (71)	27

Carbon No.	α , β -Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B	: Cyclic Substrates				
				OCO2CH3	
		(C ₈ H ₆ CH ₂) ₂ CuLi, -25° to -10°	CH₃O₂CCI	CH₂C₀H₅ (51)	2
				COCH ³	
		(n-C ₄ H ₉) ₂ CuLi, (n-C ₄ H ₉) ₃ P, -78°	СН₃СОСІ, НМРА	C_4H_9-n (38)	2
				O₂CCH₃ [†] COCH₃	
				C ₄ H ₉ -n (21)	j
				(==)	
		n-C ₆ H ₁₁ Cu(C≡CC ₆ H ₇)L	i (CO(CH ₂) ₆ CO ₂ C ₂ H ₆	
		OSi(CH ₃) ₂ C ₄ H ₉ -t	C ₂ H ₅ O ₂ C(CH ₂) ₅ COCl THF/(C ₂ H ₅) ₂ O	OSi(CH ₉) ₂ C ₄ H ₉ -t (-)	
				CO(CH²)² COCH³	
		n-C ₅ H ₁₁ ∧ Cu(C≡CC ₅ H ₇)L	\ i	$C_6H_{11}-n$ $= OSi(CH_3)_2C_4H_9-t$	
		OSi(CH ₃) ₂ C ₄ H ₉ -t (n-C ₄ H ₉) ₃ P, -60°	CH₃O₂C(CH₂)₅COCI, HMPA/THF	mixture of trans diastereomers (38)	
			,	O ,,,,,,co(ch²)º co²c²h²	
		n-C ₃ H ₁₁ Cu(C≡CC ₃ H ₇)L		C ₆ H ₁₁ -n	
		OSi(CH ₃) ₂ C ₄ H ₉ - t (n -C ₄ H ₉) ₃ P, -60°	C ₂ H ₆ O ₂ C(CH ₂) ₆ COCl, HMPA/THF	ŌSi(CH ₉)₂C₄H ₉ −t (26) Q	1
		n-C ₆ H ₁₁ Cu(C≡CC ₆ H ₇)L	i	C ₆ H ₁₁ -n	
		OSi(CH ₃) ₂ C ₄ H ₉ -t (n-C ₄ H ₉) ₃ P, -60°	CH ₃ O ₂ C(CH ₂) ₆ COSCH ₃	OSi(CH ₃) ₂ C ₄ H _e -t (46)	

355

Nucleophilic Reagent and Conditions Electrophilic Reagent and Conditions Product(s) and Yield(s) (%) Carbon α, β-Unsaturated Ref. No. Substrate Section B: Cyclic Substrates CO(CH₂)₅ CO₂CH₃ Cu(C≡CC₃H₇)Li ŌSi(CH₃)₂C₄H₆-t OSi(CH₃)₂C₄H₉-t CH₃O₂C(CH₂)₅CC 112 (n-C₄H₉)₃P, -60° (40)Cu(C≡CC₃H₇)Li CH₃O₂C(CH₂)₆COS OSi(CH₃)₂C₄H₉-t 112 $(n-C_4H_9)_3P$, -60° (25)CO2CH3 Cu(C≡CC₃H₇)Li ŌTHP CH₃O₂CCl, THF/HMPA 268 $(n-C_4H_9)_3P$ (29)OCO2CH3 CO2CH3 **ŌTHP** (21)CO₂CH₃ Cu(C≡CC₃H₇)Li ŌSi(CH₃)₂C₄H₅−t OSi(CH₃)₂ C₄H₉-t 268 CH₃O₂CCl, THF/HMPA (55)QCO₂CH₃ CO2CH3 C₅H₁₁-n ŌSi(CH₃)₂C₄H₅−t (15)Si(CH₃)₃ 214 Intramolecular TiCl₄, CH₂Cl₂, -20° (48)

Carbon α No.	, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
		Si(CH ₉) ₉ CH ₂ Cl ₂ , -78°	Intramolecular	Si(CH ₉) ₃ 75:25 β:α (68)	21
		p-CH ₃ OC ₈ H ₄ CH(CN)Li, DME, -50°	СН₃І	C _e H ₄ OCH ₃ -p 3:2 mixture of stereoisomers (90)	18
		C ₆ H ₅ CH(CN)Li, DME, -50°	СН₃І	CN C _e H ₆ 3:2 mixture of stereoisomers (60)	18
		Li CO₂C₂H ₆ , THF/HMPA, -78°	CH ₂ O, -78°	HOCH ₂ ///// S CO ₂ C ₂ H ₆ (62)	22
		(CH ₃) ₃ SiCH=C(OCH ₃)Li, THF/HMPA, (n-C ₄ H ₉) ₃ SnC -78°	BrCH₂C≡CC₂H₀ l,	OSi(CH ₃) ₃ 3:1 mixture of diastereomers (54)	1
		(CH ₂ =CH)Cu(CH ₃)Li, -78°	CH₂=CHCH₂Br	(69)	10

359

Product(s) and Yield(s) (%) Nucleophilic Reagent and Conditions Electrophilic Reagent and Conditions Carbon α, β-Unsaturated Ref. No. Substrate Section B: Cyclic Substrates n-C3H7 NN(CH₃)₂ CH2Cu(SC8H5)Li, 1) n-C₃H₇COCN 299 2) H₃O⁺ (31)THF NN(CH₃)₂ Cu(SC₆H₅)Li 1) CH₃COCN 299 2) H₃O⁺ THF (45)NN(CH₃)₂ Cu(SC₆H₅)Li 1) CH₂COCN CH₃O 299 2) H₃O⁺ THF (23)CH₃O Cu(C≡CC₃H₇-n)Li C5H11-n OSi(CH₃)₂C₄H₉-t CH₂=C(OCH₃)CH₂Br OSi(CH₃)₂ C₄H₉-t
(16) 344 -78°, HMPA NH₃(1) CO2C2H5 CH2CH=CH2 CH₂=CHCH₂Br, $(CH_3)_2C=CHCO_2C_2H_5$, 127 LDA, THF, -78° THF, HMPA (50)CH2C≡C2H5 (CH2=CHCH2)2CuLi, THF ICH2C≡CC2H5 CH₂CH=CH₂ 358 (60)CH₂=CHP(C₆H₆)₃Br, CH₃O 263 THF, -50° DMF/THF (57)

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section I	B: Cyclic Substrates				
6	<u>"</u> "	CH ₂ =CCH ₃) ₂ CuLi, 0°	1) (CH ₃) ₃ Si 0 2) 2% KOH/CH ₃ OH, reflu	x (50-70)	29
	((CH ₂ =CH) ₂ CuLi, 0°	1) (CH ₃) ₃ Si	x (50-70)	29
	((CH₃)₂CuLi, 0°	1) (CH ₃) ₃ Si	x (57)	29
	\ -	Cu(C≡CC ₃ H ₇)Li 78° to -20° 2) (CH ₃) ₃ Si (CH ₂) ₄ CH() 2% KOH/CH ₃ OH, reflux	(OCH ₃) ₂ (CH ₂) ₄ CH(OCH ₃) ₂ (80-85)	3
		(CH ₂ =CH) ₂ CuMgBr, -70°, THF	C₂H₅O₂CCH₂Br, HMPA	CO ₂ C ₂ H ₆ CH=CH ₂ 3:1.1 trans:cis (81) CH ₂ CO ₂ C ₄ H ₆ -t	29
	c	H ₂ =CHMgBr, 3 mol % CuI, THF, DMS, -78°	t-C ₄ H ₉ O ₂ CCH ₂ Br, HMPA	CH=CH ₂ >96% trans (-) CH ₃ O ₂ CCH ₂	35
	CF 0°	rao Cu(C≡CCa)		CH ₃ O (≥57)	32

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	B: Cyclic Substrates				
		CH ₂ =CHMgBr, cat. CuI	C ₂ H ₅ O ₂ CCH ₂ Br	C ₂ H ₅ O ₂ CCH _{2,//,} CH ₂ =CH (≥91)	3
		CH ₂ =CHMgBr, 1 eq CuI, THF, -60° to -40°	C₂H₅O₂CCH₂Br, HMPA	3.5:1 trans:cis (69)	
		(CH ₂ =CH)Cu(C≡CC ₄ H ₉ -t)Li, -70°, 9/1 (C ₂ H ₅) ₂ O/THF	CH₃O₂CCH₂Br, inverse addition, HM	CH ₂ O ₂ CCH ₂ 6:1 trans:cis PA (85)	3
	C:	Cu(C≡CC₃H ₇ -/	r)Li CH₃O₂CCH₂Br, HMPA	CH ₉ O ₂ CCH _{2////} CH ₉ O (49)	
	CH₃O THF	Cu(C≡CC ₃ H ₇ -n)Mg	gBr C₂H₅O₂CCH₂I	C ₂ H ₅ O ₂ CCH _{2///} CH ₃ O (>95)	3
	CH₃O THF,	Cu(C≡CC ₃ H ₇ -n)Mg	Br CH₂=CHCH₂Br	CH ₂ =CHCH ₂ //// CH ₃ O (84)	1

Electrophilic Reagent and Conditions Carbon Nucleophilic Reagent and Conditions Product(s) and Yield(s) (%) Ref. No. Section B: Cyclic Substrates CH₃I 164 THF/ HMPA, -78° CH2=CHCH2 /// CH₂=CHCH₂Br 164 THF/ HMPA, -78° CH2=CHCH2/ C₂H₅ , LDA, CH₂=CHCH₂Br 164 THF/ HMPA, -78° CH2=CHCH2, CH₂=CHCH₂Br, CuI•P(OCH₃)₃ LDA, 164 THF, -78° (34)CH2=CHCH2/ C2H5 CH₂=CHCH₂Br 164 LDA, THF/ HMPA, -78° 313 1) CO₂, -78° (CH₃)₂CuLi, 0° 2) CH₂N₂ >92:6 trans:cis (80)

366

Ca	rbon α, β-Unsaturated No. Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Se	ection B: Cyclic Substrates				
		[t-C ₄ H ₉ C≣CCu OCH ₂ C THF, -45°	DCH ₃ Li [†] , BrCH ₂ CO ₂ CH ₃ , HMPA, -20°, inverse addition	OCH ₂ OCH ₃ OCH ₂ OCH ₃ (85)	33
}		Li S THF,	CH ₂ =CHCH ₂ B ₁ , -78°	S (46)	36
		CH ₂ =CH SC ₅ H ₅ , THF, HMPA, -78°	(E)−C ₈ H ₆ CH=CHCH ₂ Br	C _e H _e S (53)	15
		[C _e H ₆ (CH ₃) ₂ Si] ₂ CuLi, THF, -23°	СН₃І, НМРА	Si(CH ₃) ₂ C ₆ H ₅ (95)	9
		[C ₈ H ₆ (CH ₉) ₂ Si] ₂ CuLi, THF, -23°	CH ₂ =CHCH ₂ Br, HMPA	Si(CH ₉) ₂ C ₆ H ₅ (54)	,
		(C ₈ H ₅) ₂ CuLi, 0°	СН₃І, НМРА	C ₆ H ₆ (65)	31
		(CH ₃) ₃ A1,· 3 mol % Ni ⁺² (ACAC) ₂ , 0°		j (-)	20

C	arbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Se	ection B:	Cyclic Substrates				
			(CH ₃) ₂ CuLi, 0°	CH₃I, 1/1 THF/HMPA	(90)	232
370			(CH ₃) ₂ CuLi, 0°	CH ₂ =CHCH ₂ I, 1/1 THF/HMPA	(76)	232
			(CH ₃) ₂ CuLi, 0°	1) (CH ₃) ₃ Si 0 2) 2% KOH/CH ₃ OH, reflux	(52)	291
			(CH ₃) ₂ CuLi, (<i>i</i> −C ₃ H ₇) ₂ O	СН₃СОСІ	о сосн _э	272
			CH ₉ S Li CH ₉ S Si(CH ₂) ₂	CH I HMBA/THE	SCH ₃ Si(CH ₃) ₃	160
			CH_3S' `Si(CH_3) ₃ , THF, -78°	CH₃I, HMPA/THF	(84)	169
			(CH ₃) ₃ Si Li (CH ₃) ₂ Si THF, -30° to 15°	Intramolecular	Si(CH ₃) ₃ (55)	157
771			(CH ₃)₂CuLi, 0°	сн₃і, дме	+ 4:1 (64) CH ₂ CH=CH ₂ CH ₂ CH=CH ₂	221
			(CH ₃) ₂ CuLi, 0°	CH ₂ =CHCH ₂ B ₁	8:1 (74)	221

C₆H₄OCH₃-p

(20)

373

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
		C ₆ H ₅ CN , 4/1 THF/HMPA, -70°	СН₃І	CN C ₆ H ₅ >95:5 trans:cis (45)	1.
	-			CN C ₆ H ₅ (30)	
		C ₆ H ₅ CN, 4/1 THF/HMPA, -70°	СН₀І	C ₆ H ₅ CN 1:1 trans:cis (95)	1
		(CH ₃) ₂ CuLi, −78°	(CH ₃) ₂ N=CH ₂ O ₂ CCF ₃	CH ₂ N(CH ₃) ₂ (80)	3
		(CH ₃) ₂ AlSC ₈ H ₅ , CH ₂ Cl ₂ , -78°	сн₃сно, тнғ	O OH SC ₆ H ₅	2
		(CH ₃) ₂ AlSeCH ₃ , CH ₂ Cl ₂ , -78°	СН₃СНО, ТНБ	SeCH ₃	2
		(CH ₃) ₂ AlSC ₈ H ₅ , CH ₂ Cl ₂ , -78°	n-C₀H₁⁊CHO, THF	OH C ₆ H ₁₇ -n SC ₆ H ₅ (90)	2

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
		(CH ₃) ₂ AlSC ₆ H ₅ , CH ₂ Cl ₂ , -78°	CH₂=C(CH₃)CHO, THF	OH SC ₆ H ₆	20
		[CH ₂ =C(CH ₃)] ₂ CuLi, DMS, -25°	C ₈ H ₈ SeCH ₂ CHO, -78°	SeC ₈ H ₆ (65)	10
		(CH ₃) ₂ CuLi, -10°	1) BH ₃ • THF 2) alkaline H ₂ O ₂	OH OH OH OH	34
		CH ₃ MgBr, cat. CuCl, -10°	1) BH ₃ • THF 2) alkaline H ₂ O ₂	OH OH OH OH 87:13 (45)	3.
		CH ₃ MgBr, 2.8 mol % CuCl, 0°	CH ₂ Cl NO HMPA	C ₂ H ₆ N (41)	36
		CH ₃ MgI, 2.8 mol % CuCl, 0°	CH₂=CHCO₂C₂H₅	(CH ₂) ₂ CO ₂ C ₂ H ₅	36
		CH ₃ MgI, 5 mol % CuCl, 0°	CH₂CI N HMPA		29

Carbo No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	on B: Cyclic Substrates				
		(n-C ₄ H ₉) ₂ CuLi, THF, -78°	СН₃І, НМРА	7:1 trans: cis (84)	118
		(n-C ₄ H ₉) ₂ CuLi, THF, -78°	n-C₄H ₉ I, HMPA	C_4H_9-n C_4H_9-n 4.5:1 trans: cis (50)	118
		n-C ₄ H ₉ Cu(OC ₄ H ₉ -t)Li, THF, -78°	СН₃І, НМРА	35:4 trans: cis (39)	118
		(CH₃)₂CuLi, -78°	[C ₈ H ₈ Fe(CO) ₂] [†] \ CH ₂ =CHCOCH ₃	C _s H _s (CO) ₂ Fe COCH ₃	36
		(CH ₃) ₃ SiLi, 5/1 THF/HMPA, -78°	СН₀І	(CH ₉) ₃ Si (97)	5:
		(CH₃)₃SnLi, THF, -78°	CH₃I	(CH ₃) ₃ Sn (95)	200
		(CH ₃) ₃ SnLi, 1/2 THF/NH ₃ , -70°	n-C ₃ H ₇ I, -33°	(CH ₃) ₃ Sn (89)	200

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section I	B: Cyclic Substrates				
		MgBr, 6 CuI • P(C ₄ H ₉ -n) ₃ , 8°	CH ₂ O(g), -10°	1:5 ratio of diastereomers (70)	9
	(CH₃)₂CuLi, 0°	C _e H _e SCI	SC _e H ₅	1
	(C₂H	s _s)₂AlCN	C ₆ H ₆ SCl, HMPA	SC _e H ₆ CN (17)	18
	Ni	(CH ₉ O)AlC≡CC ₄ H ₉ −t (acac) ₂ ·C ₄ H ₉) ₂ AlH, 0°	C ₈ H ₆ SeBr, (C ₈ H ₆) ₂ Se ₂ , -78°	SeC _e H ₆ C≡CC ₄ H _e -t 33:10 trans:cis (43)	2
	car	,) ₃ SiSeC ₈ H ₅ , t. (CH ₃) ₃ SiO ₂ CCF ₃ , H ₂ Cl ₂ , -78°	1) C ₈ H ₆ CH(OCH ₃) ₂ 2) [O]	O OCH ₃ C ₆ H ₆	2
	car	,) ₃ SiSeC _e H ₅ , t. (CH ₃) ₃ SiO ₂ CCF ₃ , I ₂ Cl ₂ , -78°	1) C ₈ H ₅ CCH ₃ (OCH ₃) ₂ 2) [O]	OCH ₃ C _e H ₆	2
	ca	,) ₃ SiSeC ₈ H ₅ , t. (CH ₃) ₃ SiO ₂ CCF ₃ , H ₂ Cl ₂ , -78°	1) (E)-C ₈ H ₆ CH=CHCH(OCH ₉) ₂ 2) [O]	O OCH ₃ C ₆ H ₆	2

Carbon o	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
		(CH ₉) ₃ SiSeC ₈ H ₆ , cat. (CH ₉) ₃ SiO ₂ CCF ₃ , CH ₂ Cl ₂ , -78°	1) HC(OC ₂ H ₅) ₃ 2) [O]	O CH(OC ₂ H ₅) ₂ (76)	20
		C ₈ H ₆ SMgI, (C ₂ H ₆) ₂ O/hexane, 0°	i-C₃H₃CHO	O OH C ₃ H ₇ -i SC ₆ H ₅ (90) OCO ₂ CH ₃	14
		(CH ₃)₂CuLi, 0°	CH₃O₂CCI	CO ₂ CH ₃	27
		(n-C ₄ H ₉) ₂ CuLi, -30° to -10°	CH₃O₂CCI	CaHe-u	27
		(C ₆ H ₅ CH ₂) ₂ CuLi, -25° to -10°	CH₃O₂CCI	OCO ₂ CH ₃ CO ₂ CH ₃ CH ₂ C ₆ H ₅ (43) OH	27
		n-C ₄ H ₉ Cu, 2.2 eq (n-C ₄ H ₉) ₃ P, -78°	C ₈ H ₈ CHO	C ₆ H ₅ (19)	36
		(n-C ₄ H ₉) ₂ CuLi, (n-C ₄ H ₉) ₃ P, -78°	CH₃COCI, HMPA	C ₄ H ₉ -n	28 11
		(n-C ₄ H ₉) ₂ CuLi, (n-C ₄ H ₉) ₃ P, -78°	СН₃СОСІ	,, (56)	28 11

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B	: Cyclic Substrates				
		(n-C ₄ H ₉) ₂ CuLi, -78°	(CH₃CO)₂O, HMPA	C ₄ H ₉ -n +	28
			W.	O ₂ CCH ₃ COCH ₃ C ₄ H ₉ -n (30)	112
		(C₂H₅)₂CuLi, -78°	CH₃COCI, HMPA/THF	C ₂ H ₅	112
		(CH ₃)₂CuLi, rt	C ₆ H ₆ COCl, HMPA	(60)	270
		(CH₃)₂CuLi, n	o-CH₃OC₅H₄COCI	O COSCH	270
		OCH ₃ Si(CH ₃) ₃ Li OCH ₃ THF, HMPA, -78°	COS, C₀H₅CH₃, CH₃I	CH ₉ O (66)	189
		S S , THF/ HMPA,	COS, CH₃I	COSCH ₃	189

	Carbon α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section B: Cyclic Substrates				
386		1) (C ₈ H ₈ S) ₃ CLi 2) s-C ₄ H ₉ Li 3) 1.0 eq CH ₃ OH	СН₃І, НМРА	SC _e H ₆ H (32)	167
		$= c = \int_{\text{Si(CH3)3}}^{\text{Si(CH3)3}}$ $\text{TiCl4, CH2Cl2, -78°}$	Intramolecular	Si(CH ₃) ₃ (85)	214
		$=C \xrightarrow{\text{Si}(CH_3)_3}$ $TiCl_4, CH_2Cl_2, -78^\circ$	Intramolecular	Si(CH ₉) ₃ (85)	214
	8:	Si(CH ₃) ₃ , TiCl ₄ , CH ₂ Cl ₂ , -78°	Intramolecular	Si(CH ₃) ₃ (19) O H (19)	214
t a		$C = C Si(CH_0)_3$ $TiCl_4, CH_2Cl_2, -78^{\circ}$	Intramolecular	Si(CH ₃) ₃	214
387		C $Si(CH_9)_3$, $TiCl_4$, CH_2Cl_2 , -78°	Intramolecular	Si(CH ₃) ₃ 95:5, β:α (79)	214
		p-CH ₃ OC ₈ H ₄ CH(CN)Li, DME, -50°	СН₀І	p-CH ₂ OC ₆ H ₄ 7:3 mixture of stereoisomers (80)	185

Product(s) and Yield(s) (%) Carbon Nucleophilic Reagent Electrophilic Reagent α, β-Unsaturated Ref. and Conditions and Conditions No. Substrate Section B: Cyclic Substrates C₆H₆CH(CN)Li, CH₃I Ć₀H₅ 185 DME, -50° 1:1 mixture of stereoisomers (80)HOCH 2// CO2C2H5 CH₂O 222 THF/HMPA, -78° (51) HOCH 2/ CO₂CH₃ C₈H₅SC(CH₃)LiCO₂CH₃, 222 CH₂O THF/HMPA, -78° (42)OC₂H₆ OC₂H₅ CeHe CH₃I 187 CN THF/HMPA, -65° stereochemistry uncertain (30)Ħ (CH₃)₃SiCH₂ CH2O2CCH3, 215 Intramolecular $Pd[P(C_5H_5)_3]_4$, THF, reflux 176 Intramolecular P(C₆H₆)₃Br 175 1) LDA, THF Intramolecular 2) CH₂=C(CH₃)P(C₆H₆)₃Br, (17)

pyridine

389

Nucleophilic Reagent and Conditions Product(s) and Yield(s) (%) Carbon Electrophilic Reagent α, β-Unsaturated Ref. and Conditions No. Substrate Section B: Cyclic Substrates CO2CH3 1) LDA, HMPA, THF, -19° Intramolecular 368 (30)2) CH₃CH=CBrCO₂CH₃ CO2CH3 1) LDA Intramolecular 369 (30)2) CH₃CH=CBrCO₂CH₃ n-C3H7 NN(CH₃)₂ CH₃ CH2Cu(SC8H5)Li, 1) n-C₃H₇COCN 299 H₃O[†] (14) THF NN(CH₃)₂ CH2Cu(SC6H5)Li, 1) CH₃COCN 299 CH₃ 2) H₃O[†] THF (14)P(O)(C₆H₅)₂ 1) CH₂=CHP(C₈H₅)Br 2 eq C(SC₂H₅)₃ 168 LiC(SC₂H₅)₃ 2) KOH (57) CO₂CH₃ LiSn(CH₃)₃ CH₂=CBrCO₂CH₃ 2 eq Sn(CH₃)₃ 168 (74)CH₃O₂C CO₂CH₃ но $Sn(C_4H_9-n)_3$ CH₂=CHCO₂CH₃ 2 eq 168 $LiSn(C_4H_9-n)_3$ (78)

390

Carbon No.	n	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	n B:	Cyclic Substrates				
					CH ₃ O ₂ C COC ₂ H ₅ HO Sn(C ₄ H ₉ -n) ₃	
			$LiSn(C_4H_9-n)_3$	1) CH ₂ =CHCOC ₂ H ₆ 2) CH ₂ =CHCO ₂ CH ₉	(64)	16
			CH ₉ MgI, cat. CuI, 0°	СНО	(-45)	370
			CH ₉ MgI, cat. CuI, 0°	С но	OH (97)	371
			1) LDA C1 CO ₂ CH ₃	Intramolecular	CO ₂ CH ₃ (20)	37
7	5	Cul	MgBr, Br•DMS, THF, -78°	HCl, H₂O, THF	ОН Щ (78)	278
		CH₂=(Cul	CHMgBr, •(n-C₄H ₉)₃P	CH ₂ O CO ₂ CH ₃ BrCH ₂ HMPA	CH=CH ₂ (55)	324

	TABLE I. α,β-Unsaturated	ALDEHYDES AND KETONES (Continued)	
Carbon α , β -U Sub	nsaturated Nucleophilic Reagent strate and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B: Cyclic S	ubstrates			
	CH ₂ =CHMgBr, THF, CuI•(n-C ₄ H ₉) ₃ P, -45° to 20°	CO ₂ CH ₃ ICH ₂ OCH ₃	CO ₂ CH ₃ OCH ₃ OCH ₃ OCH ₂ CH ₂ =CH (65)	236
O C₂H	Cu(C≡CC₀H ₇) CH₀O THF, rt	−n)MgBr C₂H₅O₂CCH₂I, HMPA	C ₂ H ₅ O ₂ CCH ₂ ////////////////////////////////////	114
	(CH ₃)₂CuLi, 0°	CH₃I, 1/1 THF/HMPA	(92)	232
	(CH₃)₂CuLi, 0°	CH₂=CHCH₂I, 1/1 THF/HMPA	(68)	+ 23
			(7)	_
	(CH₃)₂CuLi, 0°	1) (CH ₉) ₃ Si O 2) 2% KOH/CH ₃ OH, reflux	97:3 (54)	29
	[(CH ₃) ₂ C=CH] ₂ CuLi, 0°	1) (CH ₉) ₉ Si O 2) 2% KOH/CH ₉ OH, reflux	(70)	29

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
		(CH ₂ =CH) ₂ CuLi, 0°	1) (CH ₂) ₃ Si O 2) 2% KOH/CH ₃ OH, reflux	(70)	29
		(CH₃)₂CuLi, 0°	ZnCl ₂ , CH ₃ CHO	(32) OH	23
		(CH ₃) ₂ AISC ₈ H ₅ , CH ₂ Cl ₂ , -78°	СН₃СНО, ТНБ	SC ₈ H ₅	20
		CO₂C₂H₅, THF/HMPA, -78°	CH₂O	(49)	2:
		C ₆ H ₆ SC(CH ₃)LiCO ₂ CH ₃ , THF/HMPA, -78°	СН₂О	C _e H _e S (47)	2:
Ç		1) LDA, THF 2) CH₂=CHP(C₅H₅)₃Br¯	Intramolecular	(10)	17 17
		[C ₆ H ₅ (CH ₃) ₂ Si] ₂ CuLi, THF, -23°	CH₃I, HMPA	Si(CH ₃) ₂ C ₈ H ₅ (64)	6

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B	Cyclic Substrates	A-17.77			
		[C ₈ H ₅ (CH ₉) ₂ Si] ₂ CuLi, THF, -23°	CH₂=CHCH₂B1, HMPA	Si(CH ₉) ₂ C ₆ H ₅ (66) OH	63
		(CH ₃)₂CuLi, 0°	ZnCl₂, CH₃CHO	threo (98)	234 220
		CH ₉ MgI, cat. CuI, -5°	сн₃сно	(75)	271
		(CH ₃) ₂ AlSC ₈ H ₅ , CH ₂ Cl ₂ , -78°	СН₃СНО, ТНБ	OH (50) CH₂OH	204
		(CH ₃) ₂ C=CH(CH ₂) ₂ MgBr, 5 mol % CuBr•DMS, THF, 0°	H ₂ CO(g)	(CH ₂) ₂ CH=C(CH ₃) ₂ 1:1 trans:cis (90)	322
		CH ₃ MgI, cat. CuI, -5°	CH₃COCI	COCH ₃	27
		CH ₃ MgI; cat. CuI,	(E)-CH₃CH=CHCOCI	(85)	271

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
		CH ₃ MgI, cat. CuI, -5°	CH₂=CHCH₂Br, HMPA	CH₂CH=CH₂ (55)	27
		CH ₃ MgI, cat. CuI, -5°	(Е)-СН₃СН=СНСНО	(90)	27
		CH ₃ MgI, cat. CuI,	СНО	OH (96)	27
		1) THF, LDA 2) HMPA 3) CH ₂ =CHSO ₂ C ₆ H ₄ Cl-p	Intramolecular	(19)	1
		[C ₆ H ₆ (CH ₃)₂Si]₂CuLi, THF	СН₃І	Si(CH ₃) ₂ C ₆ H ₅ (-) CO ₂ CH ₃	31
		1) LDA, HMPA, THF, -19° 2) CH₃CH=CBrCO₂CH₃	Intramolecular	(55)	30
		1) LDA 2) Z-CH ₃ CH = CBrCO ₂ CH ₃	Intramolecular	CH ₃ CO ₂ CH ₃	36

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
		1) LDA 2) CI CO₂CH₃	Intramolecular	CO ₂ CH ₃ (64)	3
		1) LDA 2) CO ₂ C ₂ H ₅	Intramolecular	CO ₂ C ₂ H ₅ (61)	3
		1) LDA 2) CO ₂ C ₂ H ₅	Intramolecular	CO ₂ C ₂ H ₅	3
/	Ů	(CH ₃)₂CuLi, 0°	CH₃O₂CCI	OCO ₂ CH ₃ CO ₂ CH ₃ (54)	2
	9.	1) LDA 2) CH ₂ =CBrCO ₂ CH ₃	Intramolecular	(56)	3
\		(CH ₃) ₂ CuLi, 0°	CH₃I, 1/1 THF/HMPA	(95)	2

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section I	3: Cyclic Substrates				
		(CH ₃)₂CuLi, 0°	CH₂=CHCH₂I, 1/1 THF/HMPA	(89)	23
		1) LDA, THF 2) \$\frac{1}{p}(C_0H_0)_0B_1^{-1}\$	Intramolecular	(44)	17
		 LDA, THF CH₂=C(CH₃) P(C₆H₅)₃Br, pyridine 	Intramolecular	(44)	17
1	SCN	(CH ₃) ₂ CuLi, −70°	C ₆ H ₅ COCI	COC _e H ₅	29
l	<u></u>	(CH ₃) ₃ Si +- (CH ₃) ₂ SI THF, -30° to 15°	Intramolecular	O Si(CH ₃) ₃ (40)	15
		(CH ₃)₂CuLi, 0°	CH₃O₂CCI	OCO ₂ CH ₃ CO ₂ CH ₃	27
	a	C = C Si(CH ₃) ₃ TiCl ₄ , CH ₂ Cl ₂ , -78°	Intramolecular	Si(CH ₃) ₃ 83:17 cis:trans (90-94)	21

	Carbon No.	α, β-Unsaturat Substrate	ed Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section I	B: Cyclic Substrate	s			
406	8 ′		1) LDA, THF NO ₂	Intramolecular	(39)	179
		0	1) LDA, THF 2) CH ₂ =CHNO ₂	Intramolecular	(22)	179
	Ć	CH ₃ O ₂ C	[C ₆ H ₅ (CH ₃) ₂ Si] ₂ CuLi, THF, −23°	CH₃I, HMPA, -23°	C ₆ H ₅ (CH ₃) ₂ Si (88)	63
	((CH₃)₂CuLi, 0°	CH₃I, DME	(86)	221
	(CH₃MgI, CuI	H₂CO	(95) Q	314
407			CH ₂ =CHCu, (n-C ₄ H ₉) ₃ P, -70° to 0°	H₂CO	CH ₂ OH CH=CH ₂	292
	(ļ X	(CH₃)₂CuLi, 0°	ZnCl₂, CH₃CHO	(87)	234

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section B:	Cyclic Substrates				
			(CH ₃) ₃ SiC≡C(CH ₂) ₃ MgI, 7 mol % CuCN, -23°	CH ₃ O ₂ CCl, freshly distilled	O CO ₂ CH ₃ (CH ₂) ₃ C≡CSi(CH ₃) ₃ (60)	375 79
408			7 Hot 70 Cucht, 423	usineu	OCO2CH3	
			(CH ₃) ₂ CuLi, 0°	CH₃O₂CCI	(51)	273
			1) LDA 2) CI CO ₂ CH ₃	Intramolecular	CO ₂ CH ₃ (52)	372
			(CH ₃) ₂ CuLi, −10°	BH₃ • THF	OH OH OH 55:45 (40) Q	346
409			m-CH ₃ OC ₈ H ₄ MgBr, cat. CuCl, 0°, (C ₂ H ₅) ₂ O/THF	CH₂=CHCH₂Br, 40% HMPA	CH ₂ =CHCH ₂ m-CH ₃ OC ₈ H ₄ (-) OCO ₂ CH ₃	26
			(CH ₃)₂CuLi, 0°	CH₃O₂CCI	CO ₂ CH ₃	273
			1) LDA, THF 2) P(C ₆ H ₅) ₃ Br	Intramolecular	(42)	170

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section	B: Cyclic Substrates				
412	9	i-C₃H ₇ O	(CH₃)₂CuLi, 0°	1) (CH ₃) ₃ Si 2) 2% KOH/CH ₃ OH, reflux	(53)	291
			(CH ₃) ₃ Si (CH ₃) ₂ SI THF, -30° to 15°	Intramolecular	0	157
			CH ₃ MgBr, cat. Cu(O ₂ CCH ₃), rt	Pb(O ₂ CCH ₃) ₄ , C ₈ H ₆	о ₂ ссн ₃	378
413			(CH ₃) ₂ CuLi, 0°	ZnCl₂, CH₃CHO	threo (82)	234 220
			CH ₃ MgBr, cat. CuCl, -10°	1) BH ₃ • THF 2) alkaline H ₂ O ₂	(35)	346
			(CH ₃)₂CuLi, -10°	1) BH ₃ • THF 2) alkaline H ₂ O ₂	(53) SC _a H ₆	346
			(CH₃)₂CuLi, 0°	$(C_6H_6)_2S_2$	(28) SC _e H _e	182

Intramolecular

368

(25)

1) LDA, THF, HMPA, -19°

2) CH₃CH=CBrCO₂CH₃

418

Carbon No.	α, β-Unsaturate Substrate	ed Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrate	s			
		1) LDA 2) Z-CH ₃ CH = CBrCO ₂ CH ₃	Intramolecular	CO ₂ CH ₃	36
		1) LDA 2) CH ₂ =CB ₁ CO ₂ CH ₃	Intramolecular	(35)	369
10 TH	بر	Cu $C_5H_{11}^{-n}$ OTHP, 2.6 eq $(n-C_4H_9)_3P$, -78°	CH₃O₂C(CH₂)₅CHO	THPO (CH ₂) ₅ CO ₂ CH ₃ C ₅ H ₁₁ -n OTHP mixture of isomers (83)	14
		$ \begin{array}{c} n-C_5H_{11} & Cu(C \equiv CC_3H_7) \\ OTHP \\ (n-C_4H_9)_3P, -75^\circ \end{array} $)Li CH₃O₂CCI, THF/HMPA	THPO CO ₂ CH ₃ C ₆ H ₁₁ -n THPO SC ₈ H ₆	26
8	О (СН₂)₃СНО	(CH ₃) ₂ AISC ₈ H ₅ , CH ₂ Cl ₂ , -78°	Intramolecular	(60) OH	20
	CH₂CO₂CH₃	CH ₂ =CH(CH ₂) ₂ MgBr, 25 mol % CuBr, THF, -20° to -23°	Intramolecular	(60)	38:
i-C₃H	, Å	CH ₂ =CH(CH ₂) ₂ MgBr, CH ₂ =CHSO ₂ C ₈ H ₆ 25 mol % CuBr, THF, -20° to -23°	Intramolecular	(1)	143

423

TABLE I. α,β-Unsaturated Aldehydes and Ketones (Continued) Nucleophilic Reagent and Conditions Electrophilic Reagent and Conditions Product(s) and Yield(s) (%) Carbon α , β -Unsaturated Ref. No. Substrate Section B: Cyclic Substrates 1) LDA, THF Intramolecular 142 2) HMPA 3) CH₂=CHSO₂C₆H₅ 1) LDA, THF 142 Intramolecular 2) HMPA (65)3) CH2=CHP(C6H6)3Br 1) LDA, THF 142 Intramolecular 2) HMPA (20)(2) 1) LDA, THF 379 Intramolecular (17)2) CH₂=C(CH₃)SO₂C₆H₅ CH₃I, 1/1 THF/HMPA (CH₃)₂CuLi, 0° 232 (47)1) LDA, THF Intramolecular 176 (36)

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
	N	1) LDA, THF 2) CH ₂ =C(CH ₃)₱(C ₆ H ₆) ₃ Br̄	Intramolecular	(36)	175
Œ		n-C ₄ H ₉ MgBr, 2 mol % CuI, 0°	СН₃СНО	n-C ₄ H ₉ (95)	283 74
		n-C ₄ H ₉ MgBr, 2 mol % CuI, 0°	CH ₃ O ₂ C(CH ₂) ₄ CHO	OH (CH ₂),CO ₂ CH ₀ (93)	283 74
		n-C ₈ H ₁₇ MgX, cat. CuCl	CH₃O₂C(CH₂)₅CHO	OH (CH ₂) ₆ CO ₂ CH ₆	283
		n-C ₈ H ₁₇ MgBr, 2 mol % CuI, 0°	CH₃O₂C(CH₂)₅CHO	OH (CH ₂) ₆ CO ₂ CH ₃ (96)	283 74
		n-C ₈ H ₁₇ MgBr, 2 mol % CuI, 0°	n−C ₈ H ₁₉ CHO	OH C ₈ H ₁₃ -n (100)	74

Carbon No.		α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	В:	Cyclic Substrates				
					OH (CH ₂) ₆ CO ₂ CH ₃	
	Ĵ	7)	(E)-C ₈ H ₁₃ CH=CHMgBr, 2 mol % CuI, 0°	CH ₃ O ₂ C(CH ₂) ₅ CHO, MgI ₂	C ₆ H ₁₃ (45)	74
11		C ₈ H ₅	(CH ₃) ₂ CuLi, 0°	СН₃І, НМРА	C _e H ₅ (40)	316 67
	Ċ	SC ₆ H ₅	C ₂ H ₈ O ₂ CCH(CH ₃)Li, CuI • P(OCH ₃) ₃	CH₃I	SC ₆ H ₆ CO ₂ C ₂ H ₅	90
	ļ		(CH ₃) ₂ CuLi, "chilled"	C₂H₅C≡CCH₂Br, DME	CH ₂ C≡CC ₂ H ₅ CH ₂ C≡CC ₂ H ₅ (65) SeC ₆ H ₅	125
		SeC ₆ H ₅	(CH ₃) ₂ CuLi, −20°	n-C₅H₁₁I, THF/HMPA	(85)	383
			(CH ₃)₂CuLi, -20°	1) CH ₃ X, THF/HMPA 2) O ₃ 3) (C ₂ H ₅) ₂ NH, CH ₂ Cl ₂	+	384
71					(14)	
			(CH ₃)₂CuLi, -20°	1) CH ₂ =CHCH ₂ X, THF/HMPA 2) O ₃ 3) (C ₂ H ₅) ₂ NH, CH ₂ Cl ₂	(13)	384

Carbon No.	α , β -Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
				(53)	
		(CH ₃)₂CuLi, -20°	1) C ₆ H ₆ CH ₂ X, THF/HMPA 2) O ₃ 3) (C ₂ H ₆) ₂ NH, CH ₂ Cl ₂	(9) CH ₂ C ₆ H ₅ +	38
				C ₆ H ₅	
		(n-C ₄ H ₉)₂CuLi, -20°	1) CH ₂ X, THF/HMPA 2) O ₃ 3) (C ₂ H ₅) ₂ NH, CH ₂ Cl ₂	C ₄ H ₉ -n (50)	38
				C ₄ H ₉ -n	
		(CH₃)₃CuLi	CH₃I, HMPA, THF	SeC ₈ H ₅	23
	i	(n−C4H9)2CuLi	CH₃I, HMPA, THF	SeC ₆ H ₅ C ₄ H ₉ -n (90)	23
		(CH₃)₂CuLi	CH₂=CHCH₂Br, HMPA, THF	CH ₂ CH=CH ₂ SeC ₆ H ₅	23

	Carbon α, β-Unsatura No. Substrate	nted Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section B: Cyclic Substrat	es			
		(CH ₉)₂CuLi	C₅H₅CH₂Br, HMPA, THF	CH ₂ C ₆ H ₆ SeC ₆ H ₆ (90)	230
430		(CH ₉)₂CuLi	BrCH₂C≡CC₂H₅, HMPA, THF	O CH ₂ C≡CC ₂ H ₅ SeC ₆ H ₆ (96)	230
	n-C₄H ₉ (CH ₉)₂SiO	(CH ₀ O O C ₀ H ₁₁ -n) ₂ Cu	CH ₉ S SCH ₃ Li, n-C ₄ I	CH ₉ S SCH ₃ CH ₉ S CH ₃ OH C ₉ I (53)	H ₁₁ -n 337
		(n-C ₄ H ₉ (CH ₃) ₂ SiO) ₂ C ₅ H ₁₁ -n	^{CuLi} , CH₂=CHCHO ^{n-C}	OH C ₆ H ₁₁ - C ₄ H ₉ (CH ₃) ₂ SiO OSi(n (CH₃)₂C₄H ₉ −n 337
431		$\left(n-C_4H_9(CH_3)_2SiO\right)_2C_9$	CuLi CH2=CHCO2CH3 n-C	CH ₃ O ₂ C CO ₂ C HO C ₆ H ₁₁ - C ₄ H ₉ (CH ₃) ₂ SiO OSi	
	t-C ₄ H ₉ (CH ₃) ₂ SiO	Cu $C_9H_{11}-n$ $=$ OSi(CH ₃) ₂ C ₄ H ₉ -t, 2.6 eq $(n-C_4H_9)_3P$, -78°	CH₃O₂C(CH₂)₃C≣CCHO	.H. (CHa) Siō	(CH ₂) ₃ CO ₂ CH ₃ H ₁₁ -n H ₃) ₂ C ₄ H ₉ -t 385
		n-C ₆ H ₁₁ Cu(C≡CC ₃ H ₇)L OSi(CH ₃) ₂ C ₄ H ₉ -t			H ₂) ₅ CO ₂ C ₂ H ₅ C ₄ H ₉ -n CH ₃) ₂ C ₄ H ₉ -t 284

Nucleophilic Reagent and Conditions Electrophilic Reagent and Conditions Carbon Product(s) and α, β-Unsaturated Ref. Yield(s) (%) No. Substrate Section B: Cyclic Substrates CO(CH₂)₅CO₂CH₃ C5H11-n Cu(C≡CC₃H₇)Li t-C4H9(CH3)2SiO $OSi(CH_3)_2C_4H_9-t$ CH₃O₂C(CH₂)₅COCl, OSi(CH₃)₂C₄H₉-t trace of C-2 epimer HMPA/THF, -40° (n-C4H9)3P, -78° (35)112 CO(CH₂)₅CO₂CH₃ Cu(C≡CC₂H₇)Li C5H11-n t-C4H9(CH3)2SiO C2H5O2C(CH2)5COCI, $OSi(CH_3)_2C_4H_9-t$ THF/HMPA (23)ÒН (CH₂)₅CO₂CH₃ C5H11-n C₅H₁₁-n t-C4H9(CH3)2SiO SOC,H, SOC,H, CH₃O₂C(CH₂)₅CHO THF, -76° (68)152 **OTBDS** (CH₂)₄OSi(CH₃)₂C₄H₉-t CHO (CH₂)₄OSi(CH₃)₂C₄H₉-t TBDSO OSi (CH₃)₂ C₄H₉-t SOC₆H₅ SOC₆H₅ THF, -76° (70)152 C4H9-n OTBDS СНО (CH2)3 CO2 C4H9-t (CH₂)₃ CO₂C₄H₉-t TBDSO OSi(CH3)2 C4H9-t SOC₆H₅ SOC₆H₅ (62)152 CO₂CH₃ (n-C4He)3PCu TBDSO OSi(CH3)2 C4H9-t, **OTBDS** CO₂CH₃,

~ -25°

(78)

89

432

433

HMPA, (C₆H₅)₃SnCl, -78°

Nucleophilic Reagent and Conditions Product(s) and Yield(s) (%) Carbon Electrophilic Reagent α , β -Unsaturated Ref. and Conditions No. Substrate Section B: Cyclic Substrates (CH₂)₆CO₂CH₃ C6H1Tn TBDSO I(CH₂)₆CO₂CH₃, **OTBDS** HMPA, (C₆H₆)₃SnCl, -78° ~ -25° (20)89 434 CO₂CH₃ (n-C4He)3PCu C6H11-n TBDSO **ŌTBDS** CO₂CH₃, HMPA, (C₆H₅)₃SnCl, -78° (82)~ -25° 89 (n-C4He)3PQu CO₂CH₃ TBDSO ≣ OTHP CO2CH3, (77)89 HMPA, (C₈H₅)₃SnCl, -78° ~ -25° (CH₂), CO₂CH₃ (CH₂)₄CO₂CH₃ (n-C₄H₉)₃PCu C₅H₁₁-n t-C4H9(CH3)2SiO NO₂ OSi(CH₃)₂ C₄H₉-t -78° (42)285 O₂CCH₃ O₂CCH₃ (CH₃)₃Si (CH₃)₃Si CH₂OCH₃ (CH₃)₃SI Intramolecular CH₂OCH₃ (44) 157 THF, -30° to 15° 435 (CH₂)₃COCH₃ (CH₃)₂CuLi, -60° Intramolecular 350 (63) MgBr, 278 HCl, H₂O, THF (71)CuBr•DMS, THF, -78°

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
		(CH₃)₂CuLi, 0°	ZnCl₂, CH₃CHO	threo (76)	23 22
12	C ₀ H ₄ CH ₃ -p	(CH₃)₂CuLi	CH₃I	C _e H ₄ CH ₃ -p (62) SC _e H ₅	31
	C _s H ₅	C ₈ H ₆ SLi, THF, -78°	Methyl acrylate	CH ₃ O ₂ C C ₆ H ₅	13
		CH ₃ O₂CC(CH ₃)₂Li, THF, -78°	Methyl acrylate	CH ₃ O ₂ C C ₆ H ₅ (40)	I ₉
		CH₃O₂CC(OCH₃)₂Li, THF, -78°	Methyl acrylate	CH ₃ O OCH ₃ CO ₂ CH CH ₃ O ₂ C C ₆ H ₅ (25)	I.
		CH ₃ O ₂ CCH(C ₆ H ₅)Li, THF, −78°	Methyl acrylate	CH ₃ O ₂ C C ₆ H ₅ (48)	[3

Nucleophilic Reagent and Conditions Electrophilic Reagent and Conditions Product(s) and Yield(s) (%) Carbon α , β -Unsaturated Ref. No. Substrate Section B: Cyclic Substrates C₆H₆ CO₂CH₃ CH₃O₂C $CH_3O_2CC(CH_3)(C_6H_5)Li$, Methyl acrylate 136 THF, -78° (41) CO₂CH₃ CO₂CH₃ CH₃O₂C Methyl acrylate THF, -78° (41) 136 SeC₆H₅ 1) CH₃X, THF/HMPA 384 (CH₃)₂CuLi, -20° 2) O₃ 3) (C₂H₆)₂NH, CH₂Cl₂ 230 (CH₃)₂CuLi CH₃I, HMPA, THF (78)WCH2C≡CC2H6 230 BrCH2C≡CC2H6, (CH₃)₂CuLi HMPA, THF (90)

438

Nucleophilic Reagent and Conditions Electrophilic Reagent and Conditions Product(s) and Yield(s) (%) Carbon α , $\beta-Unsaturated$ Substrate Ref. No. Section B: Cyclic Substrates CH2=CHMgBr, ZnBr2, CH₃I, HMPA THF, -78° (30)386 CH2=CH (-) MgBr CH₃O CH₃I, HMPA, 33°, CH₃O 387 24 h THF, -78° (42)MgBr СН₃О 192 CH₃Ó CH₃I, NMP THF, -78°, 1 h NaOH, 3 eq Intramolecular 123 C2H5OH/H2O, rt CO₂CH₃ CH₃O₂C(CH₃)₂CLi, CH₃I THF, -78° (76)135 CH2CH=CH2 CO₂CH₃ CH₃O₂C(CH₃)₂CLi, THF, -78° CH₂=CHCH₂Br (74)135

441

Carb No	on	α, β-Unsaturate Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	ef.
Secti	ion B	Cyclic Substrates				
			CH₃O₂CC(CH₃)₂CLi, THF, -78°	C ₆ H ₆ CH₂B1	C ₆ H ₆ CH ₂ C ₆ H ₆ CO ₂ CH ₃	135
3			CH₃O₂CC(CH₃)C₀H₅Li, THF, -78°	СН₃І	C ₆ H ₆ CO ₂ CH ₃	135
			CH ₃ O ₂ CC(CH ₃)C ₈ H ₅ Li, THF, −78°	CH₂=CHCH₂Br	C ₆ H ₅ CH ₂ CH=CH ₂ C ₆ H ₆ CO ₂ CH ₃	135
			CH ₃ O ₂ CC(CH ₃)C ₆ H ₆ Li, THF, −78°	C ₈ H ₅ CH ₂ Br	C ₆ H ₆ CO ₂ CH ₃ (78)	135
			C ₀ H ₆ S Li CO ₂ CH ₃ , THF,	H₂CO, -60°	CH ₂ OH CO ₂ CH ₃ (68)	28
4	σ		(CH₃)₂CuLi, 25°	CH₃COCl	CH ₃ CO ₂ (-)	272
			(CH₃)₂CuLi	СН₃СОСІ	(66)	269
			(CH₃)₂CuLi	CICH₂COCI	(73)	269

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
	,	(CH ₂ =CH) ₂ CuMgBr, -50°	H ₂ CO	CH ₂ =CH ₂ OH H (65)	388
<		1) LDA 2) CH₂=CBrCO₂CH₃	Intramolecular	(20)	369
				CO ₂ CH ₃	
	H				
		(CH ₃)₂CuLi, -40° to rt	Intramolecular	(69)	317
	H ₉ O OCH ₉	7-C4H9Li, Ni(CO)4, THF, -50°	CH₂=CHCH₂I, HMPA	CH ₂ CH=CH ₂ COC ₄ H ₉ -n (85)	389
	ı	n-C ₄ H ₉ Li, Ni(CO)4, THF, -50°	n−C₃H7I, HMPA	CH ₃ O OCH ₃ COC ₄ H ₉ -n (21)	389

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	lef.
Section B:	Cyclic Substrates				
		n-C₄H ₉ Li, Ni(CO)₄, THF, -50°	C₂H₅CHO	COC ₄ H ₉ -n CH ₃ O OCH ₃ (40)	+
				O C ₂ H ₅ O C ₄ H ₉ -n (34)	
		n−C ₄ H ₉ CONi(CO) _n , THF	CH₂=CHCH₂I, HMPA	CH ₃ O OCH ₃ COC ₄ H ₉ -n	21
		n−C₄H ₉ CONi(CO) _n , THF	СН₃І, НМРА	CH ₉ O OCH ₉ COC ₄ H ₉ -n	21
		n−C₄H ₉ CONi(CO) _n , THF	C₃H7I, HMPA	CH ₃ O OCH ₃ COC ₄ H ₉ -n C ₃ H ₇ -n (21)	+ 21
				CH ₃ O OCH ₃ COC ₄ H ₉ -n C ₃ H ₇ -n (34)	

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	ef.
Section B:	Cyclic Substrates				
		n-C ₄ H ₉ CONi(CO) _n , THF	СН₃СНО	CH ₃ O OCH ₃ OH C ₄ H ₉ -n	+
			94K	CH ₉ O OCH ₉ COC ₄ H ₉ -n (31)	
13		(CH ₃)₂CuLi, -40° to rt	Intramolecular	OH (96)	31
C₅H₅	Ů,	CH ₃ O ₂ CC(CH ₃) ₂ Li, THF, -78°	CH₃I	C ₈ H ₅ CO ₂ CH ₃	1
		CH ₃ O₂CC(CH ₃)₂Li, THF, -78°	CH ₂ =CHCH ₂ Br	CH ₂ CH=CH ₂ CO ₂ CH ₃ (82)	13
		CH ₃ O ₂ CC(CH ₃) ₂ Li, THF, -78°	C₀H₀CH₂Br	C ₆ H ₅ CH ₂ C ₆ H ₅ CO ₂ CH ₃	13
		CH ₃ O ₂ CC(OCH ₃) ₂ Li, THF, −78°	CH₃I	C ₆ H ₅ OCH ₃ OCH ₃ OCH ₃ CO ₂ CH ₃	13

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
		CH₃O₂CC(OCH₃)₂Li, THF, -78°	CH ₂ =CHCH ₂ Br	C ₆ H ₆ O CH ₂ CH=CH ₂ CH ₃ O OCH ₆ CO ₂ CH	
		CH₃O₂CC(OCH₃)₂Li, THF, -78°	C ₈ H ₈ CH ₂ Br	C ₈ H ₆ CH ₂ C ₈ H ₆ CH ₃ O OCH CO ₂ CH	
	CONH ₂	CH ₃ NH ₂ , C ₅ H ₆	Intramolecular	NHCH ₃ (39)	14
		NH ₃ (1), C ₈ H ₈	Intramolecular	CONH ₂ NH ₂ (42) CONH ₂	147
		NH, C ₈ H ₈	Intramolecular	(23) CONH ₂	147
		NH, C _e H ₆	Intramolecular	(29) CONH ₂	147
		CH_3NO_2 , 10% $NaOH/t-C_4H_9OH$	Intramolecular	CH ₂ NO ₂ (30)	147

Carb No	on	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Secti	ion B:	Cyclic Substrates				
			C ₈ H ₈ SH, NaH, t-C ₄ H ₉ OH	Intramolecular	SC ₆ H ₅ (100)	147
			p-CH ₃ C ₈ H ₄ SH, NaH, t-C ₄ H ₉ OH	Intramolecular	p- CH ₂ C ₆ H ₄ S (-)	147
			$t-C_4H_9OH$, NaH,	Intramolecular	CONH ₂ (78)	147
			NaCN, t-C ₄ H ₉ OH, H ₂ O, steam bath	Intramolecular	(93) NH	147
			(CH ₉) ₂ CO, 10% KOH/ t-C ₄ H ₉ OH	Intramolecular	(30)	147
	CH ₉ O		S S C ₃ H ₇ -n, THF/HMPA	CH₂=CHCH₂Br	CH ₂ CH=CH ₂ C ₃ H ₇ -n CH ₃ O (60)	389
			n-C₃H₁Li, Ni(CO)₄, THF	CH₂=CHCH₂I, HMPA	CH ₂ CH=CH ₂ CH ₂ CH=CH ₂ (81)	389

	Carbon No.	α, β-Unsaturate Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section B:	Cyclic Substrates				
4			CH₃Li, Ni(CO)₄, THF	СН₂=СНСН₂І, НМРА	CH ₂ CH=CH ₂ CH ₂ CH=CH ₂ (54)	389
454			S S n-C ₃ H ₇ Li, THF, HMPA	CH ₂ =CHCH ₂ Br	CH ₉ O S S (60)	212
			CH _g CONi(CO)n	CH₂=CHCH₂I, HMPA	CH ₉ O COCH ₃	212
			n−C₃H₁CONi(CO)n	СН₂=СНСН₂І, НМРА	CH ₉ O COC ₉ H ₇ -n	212
455	14 C ₆ H ₅	C(CH ₃) ₂ O	$Cl(C_5H_5)_2Z_1$ $C_6H_1\cap n$ $OCH_2OCH_2C_6$ $THF, Ni(acac)_2$ $(i-C_4H_9)_2AlH, 0^\circ$	H ₆ C ₈ H ₈ SeBr, (C ₈ H ₈) ₂ Se ₂ , −78°	C₀H₀C(CH₀)₂Õ	C ₆ H ₁₁ −n OCH ₂ C ₆ H ₆ 209
		c	$C_{5}H_{11}-n$ $C_{5}H_{11}-n$ $OCH_{2}OCH_{2}C_{6}H_{11}$ $C_{5}H_{11}-n$ $OCH_{2}OCH_{2}C_{6}H_{11}-n$ $OCH_{2}OCH_{2}C_{6}H_{11}-n$ $OCH_{2}OCH_{2}C_{6}H_{11}-n$ $OCH_{2}OCH_{2}C_{6}H_{11}-n$ $OCH_{2}OCH_{2}C_{6}H_{11}-n$ $OCH_{2}OCH_{2}C_{6}H_{11}-n$	s C₅H₅SeCl, -78°	C ₆ H ₆ C(CH ₃) ₂ O	C ₆ H ₁₁ −n OCH ₂ C ₆ H ₆ 209

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
	N	$C_6H_6)_2Z_1$ $C_6H_{11}-n$ $OSi(CH_3)_2C_4H_9-t$ $i^{+2}(CH_3CO\bar{C}HCOCH_3)_2$, $-C_4H_9)_2AIH$, 0°	H ₂ CO	C ₈ H ₆ C(CH ₉) ₂ O (70)	CH ₂ OH C ₅ H ₁₁ -n OTBDS 210 CH ₂ OH
	N	$C_6H_6)_2Z_1$ $C_6H_{11}-n$ $OCH_2OCH_2C_6H_6$ $i+2$ ($CH_3CO\bar{C}HCOCH_3$) ₂ , $-C_4H_9)_2AlH$, THF, 0°	H₂CO	C ₆ H ₆ C(CH ₉) ₂ O (69)	OCH ₂ OCH ₂ C ₆ H
人	j.	NaOH, 3 eq C ₂ H ₅ OH/H ₂ O, 25°	Intramolecular	(38)	+ OH 123
				(11)	'он
	(CH₃)₂CuLi, THF, 0°	Intramolecular	(10) OH	73
	C	CH₃MgCl, 10 mol % CuBr•DMS	Intramolecular	(15)	73

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
		(CH ₃)₂MgCl • DMS	Intramolecular	(25)	7:
í−C _a I	H ₇ (CH ₂) ₄ Br	(CH ₃) ₂ CuLi, C ₈ H ₆ , 0° to 5°	НМРА, 0°	i-C ₃ H ₇ (25-30)	10 11
Ċ	CO ₂ CH ₃	(CH ₃)₂CuLi, 0°	Intramolecular	(73)	23
o	H (CH ₂) ₂ Br CO ₂ CH ₃	(CH ₃ O ₂ C) ₂ CHNa, THF, reflux	Intramolecular	CH(CO ₂ CH ₃) ₂ (up to 70)	24
t-C	C _a H ₉ Q	1) LDA 2) Cl CO ₂ CH ₃	Intramolécular	1-C ₄ H ₉ O	3
	CONH ₂ (CH ₂) ₄ CI	p-CH ₃ C ₆ H ₄ SH, NaH, DMF	Intramolecular	p-CH ₃ C ₆ H ₄ S (86)	14
		NaCN, t-C ₄ H ₉ OH, H ₂ O, steam bath	Intramolecular	NH (86)	14

	Carbon No.	α, β-Unsaturate Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section B:	Cyclic Substrates				
460	CI	H ₂ =CH	(CH ₃) ₂ CuLi, DMS/(C ₂ H ₅) ₂ O/pentane, -20	H₂CO	CH=CH ₂ H dirt	292
	сн	OSi(CH ₃) ₃ H O	(CH ₂ =CH) ₂ CuLi	СН₃І	OSi(CH ₃) ₃ H CH ₃ 3:2 cis:trans (85)	305
	C₅H₅'	C(CH ₀) ₂ O	$(n-C_6H_{11})_2CuLi$ $OCH_2OCH_2C_6H_5$, $(n-C_4H_9)_3P$, -78°	H₂CO	C ₆ H ₅ (CH ₃) ₂ CO	H ₁₁ −n CH ₂ C ₆ H ₅ 390
461	CH₃O₂€	OC ₂ H ₅	CH ₂ =CH(CH ₂) ₂ MgBr, 25 mol % CuBr, THF, -20° to -23°	Intramolecular	OC ₂ H ₅ (48)	382
	\ \ \	OCH ³	$\left(\begin{array}{c} C_{5}H_{11}-n \\ CH_{9}O \end{array}\right)_{2}CuLi$	1) CH ₃ I, 20% HMPA 2) H ₃ O ⁺	HO C ₅ H ₁₁ -n	+ 337

463

 $\begin{array}{ccc} \alpha \ , \ \beta - Unsaturated & Nucleophilic \ Reagent \\ Substrate & and \ Conditions \end{array}$ Electrophilic Reagent and Conditions Product(s) and Yield(s) (%) Carbon Ref. No. Section B: Cyclic Substrates III (CH₂)₆CO₂CH₃ (<47% overall) 1) CICH₂COCl 2) base 269 18 CH₃O₂C (CH₃)₂CuLi, -25° CH₃O₂C 1.5:1 (76)

1) CICH₂COCI

2) base

(CH₃)₂CuLi, -40°

465

TABLE I. α,β-Unsaturated Aldehydes and Ketones (Continued) Product(s) and Yield(s) (%) Nucleophilic Reagent and Conditions Electrophilic Reagent and Conditions Carbon α , β -Unsaturated Substrate Ref. No. Section A: Acyclic Substrates CH₃O₂C 2:1 (70.6)C3H7-i 1) C₈H₅SeCl 2) H₂O₂/THF (i-C₃H₇)₂CuLi, DMS, THF, -78° 321 (55) ÇO₂CH₃ CO₂CH₃ 176 1) LDA, THF Intramolecular 2) CH₂=C(CH₃)P(C₆H₅)₃Br (20),, 175 1) LDA, THF Intramolecular (23)2) CH₂=C(CH₃) P(C₆H₅)₃Br OН SO₂C₆H₅ CH₂CO₂CH₃ сн,со,сн, C₂H₅ OH O CH₃O OCH₂C₆H₅ OCH2C8H8 Intramolecular 21 OCH₃ (~80) 153 OH CH₃O SO₂C₆H₅ CH₂CO₂CH₃ он о CH₃Ò OCH₂C₆H₅ Intramolecular

153

(-82)

TABLE I. α,β-UNSATURATED ALDEHYDES AND KETONES (Continued)

Carbon No.	α , β -Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section E	: Cyclic Substrates				
\subseteq		₅ OCH(CH ₃)O(CH ₂) ₃ Cu(SC ₅ H HF, -20°	l₅)Li, CH₃I, DME	C ₆ H ₅ CH ₂ O (CH ₂) ₃ OCH(C) (EH ₂) ₃ OCH(C) (EH ₂) ₃ OCH(C)	H₃)OC₂H₅ 39
	C₂H T	₆ OCH(CH ₃)O(CH ₂) ₃ Cu(SC ₆ H HF, -20°	i ₅)Li, H₂CO(g), −78°	C ₆ H ₆ CH ₂ O (CH ₂) ₃ OCH(C) CH ₂ O CH ₂ O (67)	
СН 25	- \//	=0 .SO ₂ C ₆ H ₆ CsF, CH ₂ Cl ₂ , 25°	Intramolecular	CH ₉ O (83-91)	SO ₂ C ₆ H
27	(CH ₂) ₃ CO ₂ CI C ₅ H ₁₁ -n = OSi(CH ₉) ₂ C ₄ H	(CH₃)₃Si Li	(C Intramolecular	H ₀) ₀ SY	I ₂) ₃ CO ₂ CH ₃ H ₁₁ -n I ₃) ₂ C ₄ H ₉ -t

^a See addendum to Table IB for additional entries.

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	A: Esters				
3	CH₂=CHCO₂CH₃	LDA, THF, 0°	C ₈ H ₈ SeBr	C _e H _e Se CO ₂ CH ₃ (18)	20
		Li , THF,	Intramolecular	O CO ₂ CH ₃	139
		Li , THF,	Intramolecular	O CO ₂ CH ₃	139
		C_8H_8SMgI , $(C_2H_6)_2O/n-C_8H_{14}$, 0°	i−C₃H₁CHO	i-C ₃ H ₇ CO ₂ CH ₃ CO ₂ CH ₃ (96)	14
		C ₆ H ₆ SMgI, (C ₂ H ₅) ₂ O/n-C ₆ H ₁₄ , 0°	C ₈ H ₅ CHO	OH C ₈ H ₈ S C ₈ H ₉ S (95) OH	14
		C ₆ H ₅ SMgI, (C ₂ H ₆) ₂ O/n-C ₆ H ₁₄ , 0°	СНО	Co ₂ CH ₃ Co ₂ CH ₃ (87)	14:
		C ₆ H ₆ SMgI, (C ₂ H ₅) ₂ O/n-C ₆ H ₁₄ , 0°	(CH ₃)₂CO	OH CO₂CH₃ C₀H₀S (89)	14:
		C ₆ H ₆ SMgI, (C ₂ H ₆) ₂ O/n-C ₆ H ₁₄ , 0°	Cyclohexanone	OH CO ₂ CH ₃ C ₆ H ₅ S	14:

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A:	Esters				
	i	-C₃H¬I, Zn, CH₃CN, reflux	(CH _a)₂CO	OH CO₂CH₃ i-C₃H₁ (57)	25
	(I , Zn, CH ₂ CN, reflux	(CH ₉)₂CO	CO ₂ CH ₃	25
	j	CO ₂ CH ₃ SC ₆ H ₆	Intramolecular	C _e H _e S (83)	15
		Li , THF,	Intramolecular	CO ₂ CH ₃ (90) CO ₂ CH ₃	1
		O Li -23° , THF,	Intramolecular	(81) CO ₂ CH ₃	1
		Li , THF,	Intramolecular	(98) CO ₂ CH ₃	1
		Li , THF,	Intramolecular	(98)	(1

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A	: Esters				
	ē	Li , THF,	Intramolecular	CO ₂ CH ₃	138
	9	CH ₉ O ₂ C CO ₂ CH ₉ LDA, THF, 0°	Intramolecular, CH₃OH/HCl, reflux	CH ₀ O ₂ C 0 3:1, trans:cis (35)	325
	â	NaH, CH ₃ OH, C ₆ H ₆	кон, носн₂сн₂он	HO ₂ C (35)	392
		OCH ₃ Li, THF,	Intramolecular	OCH ₃ CO ₂ CH ₃	39:
		(CH ₃) ₃ SiCH ₂ CH ₂ O ₂ CCH ₃ , Pd[P(C ₈ H ₅) ₃] ₄ , toluene, 80-90°	Intramolecular	CO ₂ CH ₃ (68)	21:
		ONa C ₆ H ₅) ₂ CCO ₂ CH ₃ , DMSO	CH₂=CHCH₂Br	C ₆ H ₅ O CO ₂ CH ₃	394
		CH ₃ O ₂ CCH ₂ ONa, DMSO	Intramolecular	CO ₂ CH ₃	148

Carbo No.	on	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	on A:	Esters			1	
474			CH ₃ O ₂ CCH(CH ₃)ONa, DMSO	Intramolecular	CO₂CH₃ (58)	148
			CH ₃ O ₂ CCH ₂ SNa, DMSO	Intramolecular	CO ₂ CH ₃	148
			P-CH ₃ C ₆ H ₄ SO ₂ SCH ₃ , DMF	CH ₂ =CHCO ₂ C ₂ H ₆	p-CH ₂ C ₆ H ₄ SO ₂ SCH ₃ (81)	166
			OLi , THF, -78°	CH₂=CHCO₂CH₃	CH ₉ O ₂ C CO ₂ CH ₉ HO (79)	226
475	СН₄	₂ =CHCO ₂ C ₂ H ₆	n-C ₄ H ₉ MgBr, 2 mol % CuCl, -30°	O CH₀SCI, -78°	CH ₉ S CO ₂ C ₂ H ₆ n-C ₄ H ₉ (60)	357
			(CH ₉) ₂ AlSC ₈ H ₆ , CH ₂ Cl ₂ , −78°	Сн₃сно, тнғ	CO ₂ C ₂ H ₆ (73)	204
			[(Z)-n-C ₈ H ₁₁ CH=CH] ₂ CuLi	CH ₂ =CHCO ₂ C ₂ H ₆	n-C ₈ H ₁₁ CO ₂ C ₂ H ₆ CO ₂ C ₂ H ₆	I ₆ 395
			$[(Z)-n-C_3H_7CH=CH]_2CuLi$	CH ₂ =CHCO ₂ C ₂ H ₆	$n-C_3H_7$ $CO_2C_2H_6$ $CO_2C_2H_6$	s 395

Carbon No.	i.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	A:	Esters				
			[(Z)-CH₃CH=CH]₂CuLi	CH ₂ =CHCO ₂ C ₂ H ₆	CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₅	395
			[(E)-CH₃CH=CH]₂CuLi	CH ₂ =CHCO ₂ C ₂ H ₅	CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₆	395
	СН	₂ =CBrCO ₂ CH ₃	CH ₃ OLi, 0.5 eq , THF -50°	Self	CH ₃ O ₂ C Br CO ₂ CH ₃ (80)	141
			C ₂ H _o SLi, 0.5 eq THF, −50°	Self	CH ₃ O ₂ C Br CO ₂ CH ₃	141
			C ₂ H ₆ SLi, 1.0 eq THF, -50°	Self	C ₂ H ₅ SCH ₂ CO ₂ CH ₃ CH ₃ O ₂ C SC ₂ H ₅ (-) C ₆ H ₅ SCH ₂ Br	141
			C _e H _e SLi, 0.5 eq THF, -50°	Self	CH ₃ O ₂ C CO ₂ CH ₃ (95:5 trans:cis) (-)	141
			C _e H ₆ N(CH ₃)Li, 0.5 eq THF, -50°	Self	CH ₃ O ₂ C CO ₂ CH ₃	0₂CH₃ 141
			CH ₃ O ₂ CCHLiCO ₂ CH ₃ , 0.5 eq THF, -50°	Self	CH ₉ O ₂ C	141

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A:	Esters				
		OLi , THF, -78°	CH₂=CBrCO₂CH₃	CH ₉ O ₂ C Br HO CO ₂ CH ₉ (73)	226
		C ₂ H ₆ COCH ₂ Li	CH ₂ =CBrCO ₂ CH ₃	CH ₉ O ₂ C Br C ₂ H ₆ CO ₂ CH ₃ (69)	226
		p−CH3OC8H4COCH2Li	CH ₂ =CBrCO ₂ CH ₃	CH ₃ O ₂ C Br HO CO ₂ CH ₃ p-CH ₃ OC ₈ H ₄ (50)	226
		ů Li		CH ₃ O ₂ C Br CO ₂ CH ₃	
		CH₂C₀H₀, THF, -78°	CH ₂ =CB ₁ CO ₂ CH ₃	CH₂ C₅ H₅ (66)	22
сн	₂ =CBrCO ₂ C ₂ H ₆	C ₂ H ₆ OLi, 0.5 eq THF, -50°	Self	$C_2H_6OCH_2$ $C_2H_6O_2C$ $CO_2C_2H_6$	14
		OLi , THF, -78°	Self	CH ₀ O ₂ C Br HO CO ₂ CH ₃	22
СН	₂ =CBrCO ₂ CH ₂ C ₆ H ₅	C ₆ H ₆ CH ₂ OLi, 0.5 eq THF, -50°	Self	C ₆ H ₆ CH ₂ OCH ₂ Br	:H₂C₀H₀ 14

481

Nucleophilic Reagent and Conditions Product(s) and Yield(s) (%) α, β-Unsaturated Carbon Electrophilic Reagent Ref. No. Substrate and Conditions Section A: Esters HC≡CCO₂C₂H₅ª Intramolecular CH₃CN, reflux 396 (60)CH₃O₂C CH₃O₂C Intramolecular CH₃CN, reflux 396 (68)C2H5O2C Br₂ CO₂C₂H₅ 249 $(n-C_4H_9C\equiv C)Cu(C_4H_9-n)Li$, (69)-78° C2H5O2C C_4H_9-n $(n-C_4H_9C\equiv C)Cu(C_4H_9-n)Li$, N-Chlorosuccinimide CO₂C₂H₅ 249 (69) -78° CO₂C₂H₅ n-C₄H₉ 1:1.7 (95)CO2C2H5 (n-C₄H₉C≡C)Cu(CH₃)Li Ethylene oxide, -20° 249 (40)HO. CO2C2H5 C6H13-n $(n-C_4H_9C\equiv C)Cu(CH_3)Li$ 249 -20° to rt (61)

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A:	Esters				
		(n-C ₄ H ₉ C≣C)Cu(CH ₃)Li	Cyclopentanone, -78°	HO CO ₂ C ₂ H ₆	249
		(n-C₄HgC≣C)Cu(CH3)Li	2-Methylcyclohexanone, -78°	OH CO ₂ C ₂ H ₆ (99)	249
		(n-C ₄ H ₉ C≡C)Cu(CH ₃)Li	4-tert-Butylcyclohexanone, -78°	t-C ₄ H ₉ CO ₂ C ₂ H ₆ mixture of diastereomers (99)	249
		(n-C₄H ₉ C≣C)Cu(CH ₃)Li	Cycloheptanone	HO CO ₂ C ₂ H ₆	249
		(n-C ₄ H ₉ C≣C)Cu(CH ₉)Li	CH ₂ =CH(CH ₃) ₂ COCH ₃ , -78°	OH CO ₂ C ₂ H ₆	249
i		(n-C₄H ₉ C≣C)Cu(CH ₉)Li	, -78°	OH CO ₂ C ₂ H ₆	249
		(n-C₄H ₉ C≣C)Cu(CH ₉)Li	n-C _e H ₁₃ CHO	OH $n-C_0H_{13}$ $CO_2C_2H_6$ 1.6:1.0, cis:trans (80)	249
		(n-C₄H ₉ C≡C)Cu(CH ₉)Li	<i>i</i> −C ₃ H ₇ CHO, −78°	OH i-C ₃ H ₇ CO ₂ C ₂ H ₆ 3.6:1.0, cis:trans (89)	249

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section A:	Esters				•
484			(n-C₄H₀C≅C)Cu(CH₃)Li	C ₆ H ₅ CHO, ~78°	C ₈ H ₅ CO ₂ C ₂ H ₅ 4.0:1.0, cis:trans (86)	249
			(n-C ₄ H ₉ C≣C)Cu(C ₄ H ₉ -n)Li	Cyclopentanone, -78°	OH CO ₂ C ₂ H ₅ C ₄ H ₉ -n	249
			CH₃Cu(CN)Li, -78°	(E)−CH ₃ CH=CHCOCl	CO ₂ C ₂ H ₅	110
			CH ₉ Cu(C≣CC₄H ₉ -n)Li, -78°	(E)-C _e H ₅ CH=CHCOCI	CO ₂ C ₂ H ₅ (82)	110
			CH ₃ Cu(C≘CC₄H ₉ -n)Li, -78°	COCI	CO₂C₂H₅ (87)	110
485			CH ₃ Cu(C≡CC ₄ H ₉ -n)Li, -78°	Coci	CO ₂ C ₂ H ₆	110
			CH ₃ Cu(C≡CC ₄ H ₉ -n)Li, -78°	cocı	CO ₂ C ₂ H ₅	110
			CH₃Cu(C≡CC₄H₃-n)Li, -78°	COCI	CO ₂ C ₂ H ₅	110

	Carbon α, β-Unsaturat No. Substrate	ed Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section A: Esters				
486	HC≣CCO ₂ C ₄ H ₉ -t	3O ₂ C N H	, Intramolecular	1-C ₄ H ₉ O ₂ C H ¹ 1111 CH ₉ O ₂ C (23)	70 / 396
		CH ₃ CN, 80°, 24 h	, Intramolecular	1-C ₄ H ₉ O ₂ C H ^{IIII}	O / 202
				(CH ₃) ₃ Sn Sn(CH ₃) ₃	2
	4 CH ₃ C≡CCO ₂ C ₂ H ₆	$[(CH_9)_3Sn]_2,$ $Pd[P(C_9H_9)_3]_4,$ THF	.	CO ₂ C ₂ H ₅	252
	CH₂=C(CH₃)CO₂CH₃	C ₈ H ₈ SMgI, (C ₂ H ₈) ₂ O/n-C ₈ H ₁₄ , 0°	i-C₃H₁CHO	OH i-C₃H₂S C₃H₃S (97) OH	145
487		C ₈ H ₆ SMgI, (C ₂ H ₆) ₂ O/n-C ₈ H ₁₄ , 0°	СНО	CO ₂ CH ₃ (92)	145
		C ₈ H ₈ SMgI, (C ₂ H ₆) ₂ O/n-C ₈ H ₁₄ , 0°	(CH₃)₂CO	CO ₂ CH ₃ CO ₂ CH ₃ (95) CH ₃ O ₂ C CO ₂ CH ₃	145
		CH ₃ O ₂ CCHClCH ₃ , NaH, Toluene	Intramolecular	93:7 cis:trans (71)	279

Carbon No.	α, β-Unsaturated Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	A: Esters				
		CH ₃ O ₂ CCHCl ₂ , NaH, Toluene	Intramolecular	CH ₃ O ₂ C CO ₂ CH ₃	27
		(CH ₃) ₃ SiCH ₂ CH ₂ O ₂ CCH ₃ Pd[P(C ₆ H ₆) ₃] ₄ , toluene, 80-90°	, Intramolecular	CO ₂ CH ₃	21
		OLi , THF, -78°	Self	CH ₉ O ₂ C HO CO ₂ CH ₃	226
tran	s-CH ₃ CH=CHCO ₂ CH ₃	LDA, THF, 0°	С _в Н _в SeВт	C ₈ H ₈ Se CO ₂ CH ₃ (64)	203
		LDA, THF, 0°	CH₃I	(i-C ₃ H ₇) ₂ N (92)	20:
		CuC ₈ H ₈ Li N(CH ₉) ₂ THF, rt	Self	CO ₂ CH ₃ CO ₂ CH ₃ (38)	109
		(CH₃)₂CuLi, THF,	Self	i-C ₃ H ₇ CO₂CH ₃ CO₂CH ₃	109
	сн₃о	Li O		0 CH ₂ OCH ₂ OCH ₃ OSi(CH ₃) ₃ CO ₂ CH ₃	309

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A:	Esters				
		(CH ₃) ₃ SiCH ₂ CH ₂ O ₂ CCH ₃ , Pd[P(C ₆ H ₆) ₃] ₄ , toluene, reflux	Intramolecular	CO ₂ CH ₃ 13:1, trans:cis (38)	21
		$\overset{\text{OLi}}{\underset{-78^{\circ}}{\longleftarrow}} ^{\text{OLi}}$	CH ₉ I, KOC ₄ H ₉ -t	CH ₉ O ₂ C CO ₂ C ₄ H ₉ -t $\geq 10:1 \ trans:cis$ (70)	12
		OLi OC ₄ H ₉ -t, THF,	CH₃I, HMPA	2:1 trans:cis (59)	12
		CH ₃ O OCH ₃ , LDA, -78°	Intramolecular	CH ₃ O OH CO ₂ CH ₃ (-52)	.19
		CH ₃ O ₂ CCH ₂ ONa, DMSO	Intramolecular	(65)	14
		C_8H_6SMgI , $(C_2H_6)_2O/n-C_6H_{14}$, 0°	i−C₃H ₇ CHO	OH CO₂CH₃ C₀H₀S (90)	14
		C ₆ H ₆ SMgI, (C ₂ H ₅) ₂ O/n-C ₆ H ₁₄ , 0°	n−C ₈ H ₁₃ CHO	OH CO ₂ CH ₃ C ₆ H ₆ S (83)	14

-	Carbon α, β-Unsaturate No. Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
5	Section A: Esters				
492		C_6H_6SMgI , $(C_2H_6)_2O/n-C_6H_{14}$, 0°	(CH₃)₂CO	C ₆ H ₆ S (92)	145
	trans-CH ₃ CH=CHCO ₂ H ₆	[C ₆ H ₆ (CH ₃)₂Si]₂CuLi	CH₃I	Si(CH ₂) ₂ C ₆ H ₅ 1:99 erythro:threo (82)	102
		n-C ₄ H ₉ MgBr, 2 mol % CuCl, -30°	O CH₃SCI, -78°	CH ₉ S CO ₂ C ₂ H ₅ n-C ₄ H ₉ (64)	357
		(CH ₃) ₂ C=CHCH ₂ MgBr, 2 mol % CuCl, -30°	O CH₃SCI, -78°	$CH_{9}S$ $CO_{2}C_{2}H_{5}$ $CO_{2}C_{2}H_{5}$ $CO_{2}C_{2}H_{5}$ $CO_{2}C_{2}H_{5}$ $CO_{2}C_{2}H_{5}$	357 :O ₂ C ₂ H ₅
493		I ₃) ₂ C=CH(CH ₂) ₂ C(CH ₃)=CHCH; mol % CuCl, -30°	O _{MgBr} , CHS₃Cl, (CH ₆ -78°	3) ₂ C=CH(CH ₂) ₂ C(CH ₃)=CHCH ₂ (76)	357
		сн₃снф(с₃ӊ₃)₃	Intramolecular	CO ₂ C ₂ H ₆	170
	cis-CH ₃ CH=CHCO ₂ C ₂ H ₅	[C ₈ H ₅ (CH ₃) ₂ Si] ₂ CuLi	CH₃I	$CO_2C_2H_5$ $Si(CH_3)_2C_8H_5$ $2:98 erythro:threo$ (75)	102

Carbon No.	α, β-Unsaturated Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A	A: Esters				
trans	-BrCH₂CH=CHCO₂CH₃	t-C₄H ₉ SLi, THF, 0°	Intramolecular	t-C ₄ H ₉ S CO ₂ CH ₃	12
		t-C ₄ H ₉ SLi, CH ₂ Cl ₂ , 0°	Intramolecular	;; t-C₄H ₉ S (73)	39
		t-C ₄ H ₉ SLi, 0°	Intramolecular	" (70)	39
		t-C₄H ₉ SLi, THF, 0°	Intramolecular	" (65)	39
		t-C ₄ H ₉ SLi, C ₂ H ₆ , 0°	Intramolecular	" (81)	39
		t-C ₄ H ₉ SLi, C ₅ H ₁₂ , 0°	Intramolecular	(74)	39
		C ₆ H ₅ MgBr, rt	Intramolecular, saponify	C ₆ H ₆ (13)	39
trans	-BrCH₂CH=CHCO₂C₂H	SO ₂ C ₆ H ₅ THF, -78° to -50°	Intramolecular	SO ₂ C ₆ H ₆ CO ₂ C ₂ H ₆	27

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section A:	Esters				
496			SOC ₆ H ₅ THF, -78 to -50°	Intramolecular	O=SC ₈ H ₆ CO ₂ C ₂ H ₅ SO ₂ C ₈ H ₅	276
		ą	C ₈ H ₆ CHLiSO ₂ C ₈ H ₆ , THF, −65°	Intramolecular	CO ₂ C ₂ H ₅ (61) SO ₂ C ₆ H ₅	276
			p−CH₃C ₈ H₄CHLiSO ₂ C ₈ H ₈ , THF, −65°	Intramolecular	p-CH ₃ C ₆ H ₄ CO ₂ C ₂ H ₆	276
			m−CH₃C ₈ H₄CHLiSO₂C ₈ H ₅ , THF, −65°	Intramolecular	SO ₂ C ₆ H ₆ m-CH ₃ C ₆ H ₄ CO ₂ C ₂ H ₅ (72) SO ₂ C ₆ H ₅	276
		9	o-CH₃C₅H₄CHLiSO₂C₅H₅, THF, -65°	Intramolecular	o-CH ₃ C ₆ H ₄ CO ₂ C ₂ H ₅ (77)	276
497		į	C ₆ H ₅ SCHLiCO ₂ C ₂ H ₅ , THF, −60°	Intramolecular	CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₅	276
			C ₆ H ₅ SC(CH ₃)LiCO ₂ C ₂ H ₅ , THF, -60°	Intramolecular	C ₆ H ₅ S CO ₂ C ₂ H ₅ (74)	276

	Carbon α, β-Un No. Subs	nsaturated strate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section A: Esters					
		=	OLi OC ₄ H ₉ -t, THF,	KOC ₄ H ₉ -t	CO ₂ C ₂ H ₆ t-C ₄ H ₉ O ₂ CCH ₂ (84)	129
498		٠,	OLi OC ₄ H ₉ -t, THF,	KOC ₄ H ₉ -t	C ₂ H ₆ O ₂ C CO ₂ C ₄ H ₈ -t	129
		`	OLi OC₄H₃-t, THF,	KOC₄H ₉ −t, HMPA	CO ₂ C ₄ H ₉ -t	129
	Dimethyl fumarate	P	L) ₃ SiCH ₂ CH ₂ O ₂ CCH ₃ , d[P(C ₈ H ₆) ₃] ₄ , THF, eflux	Intramolecular	CH ₉ O ₂ C CO ₂ CH ₉	215
	Dimethyl maleate	P	L ₃) ₃ SiCH ₂ CH ₂ O ₂ CCH ₃ , d[P(C ₈ H ₆) ₃] ₄ , THF, eflux	Intramolecular	CH ₉ O ₂ C CO ₂ CH ₉ 1.3:1 trans:cis (60)	215
499		P	L ₃) ₃ SiCH ₂ CH ₂ O ₂ CCH ₃ , d[P(C ₆ H ₆) ₃] ₄ , toluene, 00°	Intramolecular	25:1 trans:cis (50)	215
	CH₃O₂CC≌CCC		Cu • DMS, THF, MgBr ₂ , \geq -40°, R=C ₂ H ₅ , n -C ₄ H ₉ , n-C ₆ H ₁₃ , n -C ₆ H ₁₇ , (CH ₃) ₂ C=CC ₃ H ₇ , CH ₂ =CH, (E)-CH ₃ CH=CH, (CH ₉) ₃ Si, C ₆ H ₅ , C ₆ H ₆ CH ₂	Substrate	CH ₃ O ₂ C CH ₃ O ₂ C R CO ₂ CH ₃ CO ₂ CH ₃	93

Carb No		β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	lef.
Sect	tion A: Es	ters				
	t-C ₄ H ₉ O ₂ C	CO ₂ C ₄ H ₈ -t	CH ₉ O ₂ C SH NaOCH ₃ , CH ₉ OH	Intramolecular	t-C ₄ H ₉ O ₂ C CO ₂ C ₄ H ₉ -t CO ₂ CH ₃	146
	CH ₂ =C=	CHCO₂C₂H₅	(CH ₃)₂CuLi, -90°	CH ₃ I, DME,	CO ₂ C ₂ H ₅	255
			(CH ₃)₂CuLi, −90°	CH ₂ =CHCH ₂ Cl, DME, -30°	CH ₂ =CHCH ₂ CO ₂ C ₂ H ₆ (95)	255
			(CH ₃) ₂ CuLi, −90°	(CH ₃) ₂ C=CHCH ₂ Br, DME, -30°	(CH ₃) ₂ C=CHCH ₂ CO ₂ C ₂ H ₅ (95)	255
5	C₂H ₆ C≡	ссо₂сн₃	(CH ₃)₂CuLi	CH3I	CO ₂ CH ₃ C ₂ H ₅ (25) (CH ₃) ₃ Sn Sn (CH ₃) ₃	9
	CICH₂C	:H ₂ C≡CCO ₂ C ₂ H ₅	$[(CH_3)_3Sn]_2$, Pd $[P(C_8H_5)_3]_4$, THF	<u>~</u>	CICH ₂ CH ₂ CO ₂ C ₂ H ₅	25
	BrCH₂C	CH2C≣CCO2C2H5	[(CH ₃) ₃ Sn] ₂ , Pd[P(C ₆ H ₅) ₃] ₄ , THF	**	BrCH ₂ CH ₂ CO ₂ C ₂ H ₅ (90)	25
	CH₂=C=	-C(CH₃)CO₂C₂H₅	(CH ₃) ₂ CuLi, −90°	CH ₃ I, DME, -30°	CO ₂ C ₂ H ₆	25
			(CH ₃) ₂ CuLi, −90°	CH ₂ =CHCH ₂ Cl, DME,	CH ₂ =CHCH ₂ CO ₂ C ₂ H ₆ (95)	25.

(Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section A:	Esters				
•	CH₃O₂C	CCH=C(CO₂CH₃)₂	O ₂ NC(CH ₃) ₂ K, THF, 20°	DMSO, 60°; H₂O	CH ₃ O ₂ C CO ₂ CH ₃ CO ₂ CH ₃	178
\$ 007	7	<u>i</u>	OLi , THF, -78°	Self	HO (77)	226
	C₂H₅(0₂CCH=C=CHCO₂C₂H	CO₂CH₃ NHCH₃,	t-C₄HgOK, intramolecular	CO ₂ C ₂ H ₆ CH ₂ CO ₂ C ₂ H ₆ CH ₃ (65)	149
	2		CO ₂ CH ₃ SH , THF,	Intramolecular	CO ₂ C ₂ H ₆ CO ₂ C ₂ H ₆ (66)	149
503			CO ₂ CH ₃ OH , THF,	Intramolecular	CO ₂ C ₂ H ₆ CO ₂ C ₂ H ₆ (29) C ₆ H ₆	149
			COC _e H ₆ NH ₂ , THF,	t-C₄H₀OK, intramolecular	CO ₂ C ₂ H ₆ CO ₂ C ₂ H ₆ (84)	149

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A:	Esters				
		Coch ₉ NH ₂ C _e H ₆ Cl	t-C₄H ₉ OK, intramolecular	CO ₂ C ₂ H ₆ CO ₂ C ₂ H ₆ (63)	14
		CHO NH ₂ , C ₈ H ₆ Cl	t-C₄H ₉ OK, intramolecular	CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₆ (52) CO ₂ C ₂ H ₅	14
		HSCH₂CO₂CH₃, C₅H₅CI	t-C₄H ₉ OK, intramolecular	CO ₂ C ₂ H ₆	149
		HSCH(CH₃)CO₂CH₃, C₅H₅CI	t-C₄H9OK, intramolecular	CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₅	14
		H ₂ NN(C ₈ H ₈)COC ₈ H ₆ , C ₈ H ₆ Cl	t-C₄H ₉ OK, intramolecular	C ₆ H ₅ (93)	149
			t-C₄H ₉ OK, intramolecular	CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₆ (20)	149
6 ^a CH,	Si(CH ₉) ₃ -CCO ₂ C ₄ H ₉ -t	OLi , THF, -78°	Self	t-C ₄ H ₉ O ₂ C (CH ₉) ₃ Si HO Si(CH ₉) ₃ CO ₂ C ₄ H ₉ -t	
	No.	No. Substrate Section A: Esters	No. Substrate and Conditions Section A: Esters COCH ₉ NH ₂ C ₉ H ₉ CI HSCH ₂ CO ₂ CH ₃ C ₉ H ₉ CI HSCH ₂ CO ₂ CH ₃ C ₉ H ₉ CI HSCH ₂ CO ₂ CH ₃ C ₉ H ₉ CI C ₉ H ₉ CI C ₉ H ₉ CO C ₉ H ₉ C ₉ H ₉ CO C ₉ H ₉ C ₉ H ₉ CO C ₉ H ₉ C ₉ H ₉ CO C ₉ H ₉ CO	Section A: Esters COCH ₉ NH ₂ C ₉ H ₉ Cl CHO C ₉ H ₉ Cl t-C ₄ H ₉ OK, intramolecular HSCH ₂ CO ₂ CH ₉ , t-C ₄ H ₉ OK, intramolecular HSCH ₂ CO ₂ CH ₉ , t-C ₄ H ₉ OK, intramolecular HSCH(CH ₉)CO ₂ CH ₉ , t-C ₄ H ₉ OK, intramolecular C ₉ H ₉ Cl t-C ₄ H ₉ OK, intramolecular C ₆ H ₉ Cl t-C ₄ H ₉ OK, intramolecular	No. Substrate and Conditions and Conditions Yield(s) (%) Section A: Esters COCH ₉ C ₄ H ₅ CI COCH ₉ C ₄ H ₅ CI COC ₄ H ₆ CO ₄ C ₅ H ₆ COC ₄ C ₅ H ₆ COC ₆ C ₆ H ₆ COC

Ć	Carbon α, β-Unsaturate No. Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section A: Esters				
	(E)-Cl(CH ₂)₃CH=CHCO ₂ C	CH ₃ LDA, THF, -78°	Intramolecular	N(C ₃ H ₇ -i) ₂ (44)	128
506	(E)-Br(CH ₂) ₃ CH=CHCO ₂ CH	I ₃ LDA, THF, -78°	Intramolecular	N(C ₃ H ₇ -i) ₂ (73)	128
		t-C₄H₀SLi, THF, rt	Intramolecular	SC ₄ H ₉ -t (6.3)	128
	(E)-I(CH₂)₃CH=CHCO₂C₂H	OLi OC ₄ H ₉ -t, THF,	KOC₄H _e −t	CH ₂ CO ₂ C ₄ H ₉ -t (84)	129
		OL; OC ₄ H ₉ -t, THF,	KOC ₄ H ₉ -t	CO ₂ C ₂ H ₆ CO ₂ C ₄ H _e -t (≥99)	129
		OLi OC ₄ H ₉ -t, THF,	KOC ₄ H ₉ -t, HMPA	CO ₂ C ₄ H ₉ -t (≥99)	129
507		OLi OC₂H₅, THF,	KOC ₄ H ₉ -t	CO ₂ C ₂ H ₆ (95)	129
	(E)−π−C₃H ₇ CH=CHCO₂C₂H ₆	, LDA, THF, 0°	C ₈ H ₅ SeBr	C_8H_6Se $n-C_3H_7$ $CO_2C_2H_6$ $CO_2C_2H_6$	203
		LDA, THF, 0°	CH₃I	(i-C ₃ H ₇) ₂ N C ₃ H ₇ -n	203

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A	: Esters				
11				C_6H_6S $CO_2C_2H_6$	
		LDA, THF, 0°	$(C_6H_6)_2S_2$	$(i-C_3H_7)_2N$ C_3H_7-n (33)	203
				C ₆ H ₆ S CO ₂ C ₂ H ₆	
		LDA, THF, 0°	C ₈ H ₆ SCl	n-C ₃ H ₇ (18)	203
				C ₆ H ₆ S	CO ₂ C ₂ H ₈
				(i-C ₃ H ₇) ₂ N	C ₃ H ₇ -n
				OH COCH ₃	
n-	·C₃H₁C≣CCO₂CH₃	(n-C ₄ H ₉ C≡C)Cu(CH ₃)Li	n-C ₈ H ₁₃ CHO	C ₃ H ₇ -n 7:3 cis:trans	249
				(89)	
				он сосн.	
		(n-C₄H ₉ C≡C)Cu(CH ₉)Li	C₅H₅CHO	C ₀ H ₀	249
				(93) COCH ₃	
		(n-C₄HaC≡C)Cu(CHa)Li	CH ₂ =CH ₂ Br	C ₃ H ₇ -n	249
		(1.04.9)		57:43 cis:trans (89)	
				(CH _a) _a Sn Sn(CH _a) _a	
i-4	C ₃ H ₇ C≣CCO ₂ CH ₃	$[(CH_3)_3Sn]_2$, Pd[P(C ₈ H ₅) ₃] ₄ , THF	-	i-C ₃ H ₇ CO₂CH₃ (90)	252
				(CH ₉) ₃ Sn Sn(CH ₉) ₃	
	C≣ CCO₂CH₃	[(CH ₃) ₃ Sn] ₂ ,	±	CO ₂ CH ₃	252
		$[(CH_3)_3Sn]_2,$ $Pd[P(C_6H_5)_3]_4, THF$	-	(90)	-

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A:	Esters				
	со₂сн₃			CH₃OC CO₂CH₃	
7 ^a Fe(CO) ₄ /1	(C ₂ H ₅ O ₂ C) ₂ CHNa, 2/1 THF/NMP, 25°	CH₃I	(C ₂ H ₅ O ₂ C) ₂ CH (85)	22
				C ₂ H ₅ OC CO ₂ CH ₃	
		(C ₂ H ₅ O ₂ C) ₂ CHNa, 2/1 THF/NMP, 45° to 50°, 72 h	C ₂ H ₆ I	(C ₂ H ₆ O ₂ C) ₂ CH (54)	228
				n-C₃H ₇ OC CO₂CH₃	
		(C ₂ H ₅ O ₂ C) ₂ CHNa, 2/1 THF/NMP, 45° to 50°, 72 h	n-C ₃ H ₇ I	(C₂H₅O₂C)₂CH (40)	228
				CH₃OC CO₂CH₃	
				CH ₃ O ₂ C CO ₂ C ₂ H ₅	
	($(C_2H_5O_2C)_2CNa(COCH_3)$, 2/1 THF/NMP, 25°	СН₃І	CO ₂ C ₂ H ₅ (43)	228
				C ₂ H ₅ OC CO ₂ CH ₃	
				CH3O2C	
		(C ₂ H ₅ O ₂ C) ₂ CNa(COCH ₃), 2/1 THF/NMP, 25°	C ₂ H ₅ I	CO ₂ C ₂ H ₅ CO ₂ C ₂ H ₆ (42)	22
				CH₃OC CO₂CH₃	
				NC CO ₂ C ₂ H ₅	
		(C ₂ H ₅ O ₂ C) ₂ CNa(CN), 2/1 THF/NMP, 25°	CH₃I	CO ₂ C ₂ H ₅ (43)	22
		O Na		CH₃OC CO₂CH₃	
		CO₂CH₃, 4/3/2 THF/NMP/HMPA, 25	CH₃I	CO ₂ CH ₃ (46)	221
(C ₂ 1	H ₆ O) ₂ P(O) _CO ₂ C ₂ H ₆			C _e H ₅ CO ₂ C ₂ H ₅	
	Y	C ₆ H ₅ C≡CLi, ZnCl ₂ , THF, -70°	C ₈ H ₅ CHO, reflux	C ₆ H ₆ C≡C 3:1 E:Z	16:

TABLE II. α,β-Unsaturated Esters and Lactones (Continued)					
Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A:	Esters				
	c	_e H _e C≡CLi, ZnCl₂, THF, -70°	C₂H₅CHO, reflux	C_2H_6 $C_6H_6C\equiv C$ $C_8H_6C \equiv C$ $C_71)$	165
	C	EH ₉ SO SCH ₃ Li THF, -70°	C ₈ H ₆ CHO, rt	C ₆ H ₆ CO ₂ C ₂ H ₆ CH ₃ SO SCH ₃ (62) CO ₂ C ₂ H ₆	165
	c	EH ₉ SO SCH ₉ Li THF, -70°	C₂H₅CHO, rt	C ₂ H ₅ CO ₂ C ₂ H ₅ CH ₉ SO SCH ₉ (56)	165
				C ₆ H ₈ CO ₂ C ₂ H ₆	
	C	H₃SO SCH₃ Li THF, -70°	(E)-C ₈ H ₈ CH=CHCHO, reflux	CH ₉ SO SCH ₃ (≥50) CO ₂ C ₂ H ₆	165
	C	H₃SO SCH₃ Li , THF, -70°	(E)-CH₃CH=CHCHO, reflux	CH ₃ SO SCH ₃ (≥38)	165
	c	H₀SO SCH₃ Li ,	(E)−C ₃ H ₇ CH=CHCHO,	n-C ₃ H ₇ CO ₂ C ₂ H ₈ CH ₃ SO SCH ₃	
	C	THF, -70° H ₃ SQ SCH ₃	reflux	(≥42) C ₆ H ₆ C≡C CH ₉ SO CH ₉ SO	165
		Li . THF, -70°	C _e H _e C≡CCHO, reflux	SCH₃ (≥43)	165

Nucleophilic Reagent and Conditions Electrophilic Reagent and Conditions Product(s) and Yield(s) (%) Carbon α , β -Unsaturated Ref. Substrate No. Section A: Esters C2H5O2C SCH₃

Carbo No.	on	α, β-Unsaturate Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section	on A:	Esters				
(E	;)-I(CH	₂) ₄ CH=CHCO ₂ C ₂ H ₅	OLi OC ₄ H ₉ -t, THF,	KOC ₄ H ₉ -t	CH ₂ CO ₂ C ₄ H ₉ -t (94)	129
}			OLi OC ₄ H ₉ -t, THF,	KOC₄H ₉ −t, HMPA	CO ₂ C ₂ H ₆ CO ₂ C ₄ H ₉ -t (≥99)	129
			OLi OC₄H _g -t, THF,	KOC ₄ H ₉ -t	CO ₂ C ₄ H ₉ −t (≥99)	129
			OLi OC ₂ H ₆ , THF,	KOC ₄ H ₉ -t	CO ₂ C ₂ H ₆ (80)	129
24					$CO_2C_4H_9-t$ $CO_2C_4H_9-t$	20
(E	CH₃	2) ₄ CH=CHCO ₂ C ₄ H ₉ - O ₂ C CO ₂ CH ₃	t n-C₄H ₉ Li, −8°	Intramolecular	(-)	39
1	O.A.	G	(CH ₉)₂C=CHMgBr, THF, 45°	Intramolecular	CH ₉ O ₂ C CO ₂ CH ₃	86
	СН₃	0 ₂ C	(CH ₃) ₂ C=CHMgBr, cat. CuCl, 45°	Intramolecular	(51)	8
					"	
		Br	(CH ₃) ₂ C=CHMgBr, THF, 24 ^c	Intramolecular	(32)	86

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reag and Conditions	gent Product(s) and Yield(s) (%) Ref.
Section A:	Esters			
CH ₂ =CH	CO₂C₂H₅			"
	CO₂C₂H ₅	(CH ₃) ₂ C=CHMgBr, cat. CuCl, THF, 24°	Intramolecular	(25)
		(CH ₃) ₂ CuLi, 0°	CH₃I, 0°	(E)-C ₂ H ₆ CH=CHCH ₂ C(CO ₂ C ₂ H ₆) ₂ CH ₃ (70) 22
		(CH ₉) ₂ CuLi, 0°	CH ₂ =CHCH ₂ B ₁ , 0°	(E)-C ₂ H ₆ CH=CHCH ₂ C(CO ₂ C ₂ H ₆) ₂ CH ₂ CH=CH ₂ (75) 22
		(CH ₃) ₂ CuLi, 0°	C _e H ₅ CH ₂ Cl, 0°	(E)-C ₂ H ₆ CH=CHCH ₂ C(CO ₂ C ₂ H ₆) ₂ CH ₂ C ₂ H ₆ (88) 227
		(n-C ₄ H ₉) ₂ CuLi, -20°	CH₃I, n	(E)-n-C ₆ H ₁₁ CH=CHCH ₂ (CO ₂ C ₂ H ₆) ₂ CH ₃ (75) 227
		(n-C ₄ H ₉) ₂ CuLi, -20°	CH₂=CHCH₂Br, rt	(E)-n-C ₆ H ₁₁ CH=CHCH ₂ (CO ₂ C ₂ H ₆) ₂ CH ₂ CH=CH ₂ (88) 227
\triangle	CO ₂ C ₂ H ₆	(CH ₉)₂CuLi, 0°	CH₃I, 0°	CH(CO ₂ C ₂ H ₅) ₂ (93)
		(CH₃)₂CuLi, 0°	CH ₂ =CHCH ₂ Br, 0°	CH(CO ₂ C ₂ H ₆) ₂ CH ₂ CH=CH ₂ (95)
		(n-C ₄ H ₉) ₂ CuLi, -20°	СН₃І, п	CH(CO ₂ C ₂ H ₈) ₂ (99)
		(n-C ₄ H ₉) ₂ CuLi, -20°	CH₂=CHCH₂Br, rt	CH(CO ₂ C ₂ H ₅) ₂ CH ₂ CH=CH ₂ (98)
Br(C	H ₂) ₄ C≘CCO ₂ CH ₃	[(CH ₃) ₃ Sn] ₂ , Pd[P(C ₆ H ₅) ₃] ₄ , THF	:- -	(CH ₃) ₃ Sn Sn(CH ₃) ₃ Br(CH ₂) ₄ CO ₂ CH ₃ 252

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A:	Esters				
8 a Fe(CO₂CH₃	(C ₂ H ₈ O ₂ C) ₂ CNa(COCH ₉), 1/2/1 THF/NMP/HMPA, 40°	СН₃І	CH ₃ O ₂ C COCH ₃ CH ₃ O ₂ C CO ₂ C ₂ H ₆ CO ₂ C ₂ H ₆ (61)	228
		(C ₂ H ₈ O ₂ C) ₂ CNa(CN), 2/1 THF/NMP, 40°	CH₃I	CH ₃ O ₂ C COCH ₃ NC CO ₂ C ₂ H ₆ (16)	228
(E)-n-C ₆	Н₁₁СН=СНСО₂СН₃	(C ₆ H ₆) ₃ PCLi(CH ₃) ₂ , THF, rt	Intramolecular	CO ₂ CH ₃	173
(<i>E</i>)-Br(C	H ₂) ₆ CH=CHCO₂CH₃	LDA, THF, reflux	Intramolecular	$N(C_9H_7-i)_2$ (23)	128
(E)-I(CH	I ₂) ₆ CH=CHCO ₂ C ₂ H ₆	OLi OC ₄ H ₉ -t, THF,	KOC ₄ H ₉ -t	CO ₂ C ₄ H ₉ -t 1:1 mixture of epimers (60)	129
		OC, H ot, THF,	KOC ₄ H ₉ -t	CO ₂ C ₂ H ₆ CH ₂ CO ₂ C ₄ H ₆ -t 3.5:1 trans:cis (58)	129
الر	NC CO ₂ C ₂ H ₆	i-C ₃ H ₇ NO ₂ , K ₂ CO ₃ , C ₂ H ₆ OH, reflux	Intramolecular	CO ₂ C ₂ H ₆	177
		1) (CH ₃) ₂ CuLi, -80° 2) CH ₃ Li, -80°	I_2	C _e H _s 68:32 cis:trans (70)	250

Carbon No.	α,	β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A	: Est	ters	······································			
			CH ₃ MgBr, cat. CuI, -80°	I_2	37:63 cis: trans (-) (CH ₃) ₃ Sn Sn(CH ₃) ₃	25
Br	·(CH ₂)	5C≡CCO₂CH₃	$[(CH_9)_9Sn]_2$, Pd $[P(C_6H_6)_9]_4$, THF		Br (CH ₂) ₈ CO ₂ CH ₃ (90) CO ₂ CH ₃	25
,	X.	−C≡CCO₂CH₃ ₂CH₃	(CH ₃) ₂ CuLi, THF, -78°	Intramolecular	(45)	9
			(n-C ₄ H _e) ₂ CuLi, THF, -78°	Intramolecular	CO ₂ CH ₃ C ₄ H ₉ -n (41)	9
			[CH ₂ =CH(CH ₂) ₂] ₂ CuMgBr, THF, -78°	Intramolecular	CO ₂ CH ₃ (CH ₂) ₂ CH=CH ₂ (43) CO ₂ CH ₃	9
			(C ₂ H ₆) ₂ CuMgBr, THF, -78°	Intramolecular	C ₂ H ₅ (37)	9
			CuMgBr	, Intramolecular	CO ₂ CH ₃	9
			(i-C ₂ H ₇) ₂ CuMgCl, THF, -78°	Intramolecular	C ₃ H ₇ -i (35)	9

Carbon No.	α, β	-Unsaturate Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A	: Ester	'S				
					CO ₂ CH ₃	
			$H_3)_2C=CH(CH_2)_2C(CH_3)H]_2CuM$ THF, -78°	IgCl, Intramolecular	CH(CH₂)(CH₂)₂CH (48)	H=C(CH ₀)
					CO ₂ CH ₃	
			(CH ₂ =CHCH ₂) ₂ CuMgCl, THF, -78°	Intramolecular	CH ₂ CH=CH ₂ (40)	
9 ^a (E)-n	:-C ₈ H ₁₃ CI	н=СНСО₂СН₃	Pd[P(C ₆ H ₆) ₃] ₄ , THF, reflux	, Intramolecular	n-C ₆ H ₁₃ CO ₂ CH ₃ (51)	2
trans-	·C₅H₅CH=	=СНСО₂СН₃	[C ₆ H ₆ (CH ₃) ₂ Si] ₂ CuLi	СН₃І	C ₆ H ₅ Si(CH ₉) ₂ C ₆ H ₅ 3:97 cis: trans (88)	1
			(CH ₃) ₃ SiCH ₂ CH ₂ O ₂ CCH ₂ Pd[P(C ₈ H ₆) ₃] ₄ , THF, reflux	o, Intramolecular	C ₉ H ₆ CO ₂ CH ₃ (70)	2
C ₈	,H₅C≣CC0	O₂CH₃	(CH ₉) ₂ CuLi, -80°	I ₂	C _e H _e 23:77 cis: trans (63)	2
Jac o	ans-Benzy	a a	[C ₈ H ₅ (CH ₃) ₂ Si] ₂ CuLi	1. СН₃СНО	C ₆ H ₆ (CH ₃) ₂ Si C ₆ H ₆ OH	4
	nnamate	t	F -00/3/50-15-2777	2. H ₂ /Pd	9:1 mixture of isomers (70)	

Carbon No.		α, β-Unsatura Substrate	ted Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
ection	A:	Esters				
C _e H		t-C ₄ H ₉	OCH₃ C₅H₅Li, -78°	CH ₃ I	$CH_3 \longrightarrow C_6H_5 \longrightarrow C_6H_5 \longrightarrow C_4H_9$ $C_8H_5 \longrightarrow C_6H_5 \longrightarrow C_4H_9$ (88)	19
ļ	NO NO	CO ₂ C ₂ H	i-C₃H₁NO₂, K₂CO₃, C₂H₅OH, reflux	Intramolecular	CO ₂ C ₂ H ₅	17
7	но.	CECCO2C2H	(CH ₃)₂CuLi, DMS, -78°	CH₂=CHCH₂B1, HMPA	(71)	2:
10 (E)-	- <i>m</i> -C	:H₃OC₀H₄CH=CH0	CO ₂ CH ₃ (C ₆ H ₆)3 [†] CLi(CH ₃)2, THF, rt	Intramolecular	m-CH ₃ O C ₆ H ₄ (65)	13
	NC 、	CO₂C₂H₅	i-C ₃ H ₇ NO ₂ , K ₂ CO ₃ , C ₂ H ₅ OH, reflux	Intramolecular	CO ₂ C ₂ H ₅ CN (81)	17
(E)-	-BrCl	H ₂ CH=C(C ₆ H ₅)CO	² 2CH₃ C₅H₅MgBr, rt	Intramolecular, saponify	C ₈ H ₆ C ₈ H ₆ HO ₂ C stereochemistry uncertain (0.6)	39
CH.	=C(S	SC ₈ H₄CH₃−p)CO ₂ C	OLi H ₃ , THF, -78°	CH ₂ =C(p-CH ₃ C ₆ H ₄ S)CO ₂ CH ₃	P-CH ₃ O ₂ C SC ₆ H ₄ CH ₃ HO Fill CO ₂ CH ₃	

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	ef.
Section A:	Esters				
C⁴H°SC	\checkmark	C ₆ H ₆ S Li	Intramolecular	CO ₂ C ₂ H ₅ CH ₂ SC ₆ H ₅ (63)	319
n-C ₇ H ₁₈	sC≡CCO₂CH₃	(CH₃)₂CuLi, THF, -78°	O ₂	CO ₂ CH ₃ C ₇ H ₁₅ -n (-)	96
		(CH ₃)₂CuLi, 1 eq THF, -78°	O ₂	CH ₉ O ₂ C CO ₂ CH ₃ C ₇ H ₁₅ -n	96
		(CH₃)₂CuLi, 1 eq THF, -78°	I ₂	C ₇ H ₁₅ -n (-)	96
t-C4H9(CH₃)₂SiOCH₂C≣CCO₂	$C_2H_5 [(CH_9)_3Sn]_2, \\ Pd[P(C_8H_6)_3]_4, THF$		(CH ₃) ₃ Sn Sn(CH ₃) ₃ t-C ₄ H ₆ (CH ₃) ₂ SiOCH ₂ CO ₂ C ₂ H ₅ (90) (CH ₃) ₃ Sn Sn(CH ₃) ₃	252
	C≡CCO₂CI	H_3 $[(CH_9)_9Sn]_2,$ $Pd[P(C_6H_6)_9]_4, THF$	¥	(90) (CH ₉) ₃ Sn Sn(CH ₉) ₃	252
	C≡CCO₂CH ₃	[(CH ₃) ₃ Sn] ₂ , Pd[P(C ₆ H ₆) ₃] ₄ , THF	-	(90) (90)	252
C ₆ H,	₆ CH=C(CO ₂ CH ₃) ₂	(CH ₉) ₉ SiCH ₂ CH ₂ O ₂ CCH ₃ Pd[P(C ₈ H ₅) ₉] ₄ , toluene, 85-95°	, Intramolecular	CO ₂ CH ₃ CO ₂ CH ₃ (65)	215

arbon No.	α, β-Unsaturated Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
ection A:	Esters				
Y	×.	CH ₂ O ₂ C triton B, C ₂ H ₅ SH,	Intramolecular	CO ₂ CH ₃	1
11 THPC)(CH ₂) ₃ C≡CCO ₂ CH ₃	[(CH ₉) ₃ Sn] ₂ , Pd[P(C ₆ H ₆) ₃] ₄ , THF	<u>-</u>	(CH ₃) ₃ Sn Sn(CH ₃) ₃ THPO(CH ₂) ₃ CO ₂ CH ₃	2
12 (E)-m-	CH₃OC₀H₄(CH₂)₂CH=	=CHCO₂CH₃ (C₀H₅)₃ [‡] CLi(CH THF, rt	o)2, Intramolecular	m-CH ₃ O C ₆ H ₄ (70)	CO₂CH₃
4	OSi(CH ₉) ₉	(CH₃)₂CuLi, THF, -78°	CH ₂ =CHBr, I ₂ , reflux	(85)	:
	CO ₂ CH ₃	CH ₂ =C(CH ₃)MgBr, CuI, THF, -50°	Intramolecular	O CO2CH3	+ '
				O O OH CO ₂ CH ₃ 4:3 (84)	
				(CH₂)₃Sn	Sn(CH ₃) ₃

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section A:	Esters				
534		CO ₂ C	LHMDS, hexane	Intramolecular	CO ₂ C ₂ H ₅	401
	(CH ₆);	CCO₂Si(CH₀)	o (CH₃)₂CuLi, THF, -78°	I_2	n-C ₆ H ₁₃ (72)	253
	C₅H ₆	OSi(CH ₉) ₉ C€CCO₂CH ₉	(CH₃)₂CuLi, THF, -78°	 CH₃COCI, HMPA I₂, reflux 	C _s H _s COCH _s	253
			(CH₃)₂CuLi, THF, -78°	1) C ₂ H ₆ OCH ₂ Cl, HMPA 2) I ₂ , reflux	OC ₂ H ₆ OC ₂ H ₆ (62)	253
			(CH ₃)₂CuLi, THF, -78°	 (CH₃)₂S₂, HMPA I₂, reflux 	C _e H ₅ O O O	253
535			(CH₃)₂CuLi, THF, -78°	CH₃I, HMPA	C ₆ H ₆ 0 (58)	253
			(CH₃)₂CuLi, THF, -78°	I ₂	C _e H ₆ (51)	253

(51)

(53)

 $^{^{\}it a}$ See addendum to Table IIA for additional entries.

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Lactones				
			CH₂O√	CH ₉ O OCH ₉	
4 🔷		SCH ₃ SCH ₃	CH ₃ O OCH ₃	CH ₂ S O	1
	(CH CI	₉) ₂ AISC ₈ H ₈ Li [†] , H ₂ Cl ₂ , -78°	C ₈ H ₈ CHO, THF	C _s H _s S (77) OH Q	26
	С _в Н. -5	SLi, THF, 0°	C₀H₀CHO	C _e H _e S (92)	40
	C _e H ₆ -5	SLi, THF,)°	n−C₃H₁CHO	n-C ₃ H ₇ OHO C ₆ H ₆ S (61)	4
	C _e H _e −50	SLi, THF,	л-С _в Н ₁₁ СНО	n-C ₆ H ₁₁ C ₆ H ₆ S (73)	4
	С _в Н _в . -5(SLi, THF,	n-С ₇ Н ₁₈ СНО	n-C ₇ H ₁₈ C ₆ H ₆ S (56)	4
	С _в Н ₆ : -50	SLi, THF,	C _e H ₆ COCH ₃	C _e H _e S (17)	40

541

Carbon No. Nucleophilic Reagent and Conditions Electrophilic Reagent and Conditions Product(s) and Yield(s) (%) α, β-Unsaturated Ref. Substrate Section B: Lactones 403 CoHoSLi, THF, $(C_2H_5)_2CO$ C₆H₆S -50° CH₃O OCH₃ СН₀О CH₂Br сн₀о́ OCH₃ THF, -78° (65)159 CH₂Br (78) THF, HMPA 160 215 (CH₃)₃SiCH₂ CH2O2CCH3, Intramolecular Pd[P(C₆H₅)₃] Toluene, (52)115° ОН CH₂=C(CH₃)MgBr, CuI, THF, -50° Intramolecular 306

Carbon α No.	s, β-Unsaturate Substrate	ed Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B: L	actones				
				OH OH	
				(95) p-CH₃C₅H₄Ş /	
p-CH₃C _e l	HLS Å	OLi			
,			CH ₂ =CHP(C ₆ H ₆) ₃ Br	(26)	9
				. 8	
بار		Li 		CH ₆ S	
12 C ₆	H ₁₇ -n	r-C₄H₀O₂C SCH₃,	I ₂ , THF	CO ₂ C ₄ H ₉ -t	2
		THF, -78°		(93)	
				$^{\circ}$	
		S S		S III CH₂OCH	I.C.H.
بُر		CH ₄ O Li	.O CH₂Br	- в осн.	-2-00
\	H₂OCH₂C ₈ H ₈	OCH ₃		сн, о осн,	
	>	THF		(96)	#.
QCH ₉ O	um (CH ₉ O CH ₃	Q.	CH ₉ O	Ting
	•	CO₂CH₀	+		1
8		OCH ₃ OCH ₃ LDA, THF, N,N'-	Intramolecular	CH₀O OCH₃ OH (~51)	î
		dimethylpropyleneurea			

Carbon α , β -Unsaturated No. Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A: Amides				
5 trans-CH ₃ CH=CHCONHCH ₃	n-C ₄ H ₉ Li, THF, -20° to rt	СН₃І	n-C ₄ H ₀ (70)	190
	n-C ₄ H ₉ Li, THF, -20° to rt	Self	CH₃NHCO CONF n-C₄H₃ (48)	190
HC≡CCON(CH ₉) ₂	(CH ₃) ₃ SnCu • DMS, THF, -78°	СН₃І, НМРА	(CH ₃) ₃ Sn (87)	95
	(CH ₃) ₃ SnCu • DMS, THF, −78°	CH₂=CHCH₂Br, HMPA	(CH ₃) ₃ Sn (82)	95
	(CH ₃) ₃ SnCu • DMS, THF, −78°	CH₂=C(CH₃)CH₂Br, HMPA	(CH ₉) ₉ Sn (81)	95
	(CH ₃) ₃ SnCu • DMS, THF, −78°	(E)-CH ₉ CH=C(CH ₉)CH ₂ Br, HMPA	(78)	95
6 trans-CH ₃ CH=CHCON(CH ₃) ₂	n-C ₄ H ₂ Li, THF, -20° to rt	CH₂=CHCH₂Br	CH ₂ =CHCH _{2////////////////////////////////////}	190 (CH ₀) ₂
	n-C ₄ H ₉ Li, THF, -20° to rt	CH³O CH3O	CH ₉ O	190

Carbon No.	α , β -Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	ef.
Section A:	Amides	**************************************			
<u> </u>		n-C₄H₀Li, THF,	C₂H₅O₂CCl	$C_2H_6O_2C_{I_{I_{I_1}}}$ CON(CH ₀) ₂	
		-20° to rt		(87) C ₀ H ₀ S ₁₁₁₁ CON(CH ₃) ₂	19
		n-C ₄ H ₂ Li, THF, -20° to rt	$(C_8H_6)_2S_2$	n-C ₄ H ₉ (65)	19
		n-C₄H₀Li, THF,	Self	(CH ₉) ₂ NCO CON(CH ₃) ₂	
		-20° to rt		(85) CON(CH ₃) ₂	190
		s-C ₄ H ₉ Li, THF, -20° to rt	CH₃I	s-C ₄ H ₆ (61)	190
		Ï		CON(CH ₃) ₂	
		S S, THF,	CH⁴I	(75)	19
		ş Li	СН₀О	CH ₃ O CH ₃ O CON(CH ₃) ₂	
		, THF, -20° to rt	CH⁴O	(80)	190
		CH ₉ O S S Li	СНО	CH ₃ O CON(CH ₃) ₂	
		CH ₉ O THF, -78°		CH ₃ O ST:10 three:erythro	158

(97)

Carbon α, β-Unsaturate No. Substrate	ed Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A: Amides				
	O S S Li THF, -78°	СН₀О СНО	OCH ₃ OC	
CH ₃ C≡CCON(CH ₃) ₂	$[(CH_9)_9Sn]_2,$ $Pd[P(C_8H_5)_9]_4,$ THF		(CH ₉) ₉ Sn Sn(CH ₉) ₃ CON(CH ₉) ₂ Z:E, 4:1 (66)	252
CH ₂ =CHCON(CH ₃)N(CH ₃)	2 n-C₄H ₉ Li, THF, −78°	 CH₃I 10%HCI, reflux 	n-C ₄ H ₉ (56)	193
	n-C₄H _e Li, THF, -78°	 n-C₄H₉Br 10%HCl, reflux 	n-C ₄ H ₉ CO ₂ H n-C ₄ H ₉ (55)	193
	n-C₄H _e Li, THF, -78°	1) (CH ₃) ₂ S ₂ 2) 10%HCl, reflux	n-C ₄ H ₉ (53)	193
	n-C₄H ₉ Li, THF, -78°	1) CH₃I 2) CH₃Li, HMPA, -78° to 0°	n-C ₄ H ₉ (51)	193
7 C ₂ H ₆ C≡CCON(CH ₃) ₂	(CH ₃) ₃ SnCu • DMS, THF, -78°	СН₃І, НМРА	$(CH_9)_9Sn$ C_2H_6 C_2H_6 C_2H_6	95
	(CH ₉) ₃ SnCu • DMS, THF, -78°	CH ₂ =CHCH ₂ B ₁ , HMPA	(CH _a) ₃ Sn C ₂ H ₅	95

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	Section A:	Amides				
					CON(CH ₃) ₂	
550			(CH ₃) ₃ SnCu • DMS, THF, −78°	CH ₂ =C(CH ₃)CH ₂ Br, HMPA	(CH ₉) ₉ Sn C ₂ H ₆ (81)	95
					(CH ₉) ₃ Sn CON(CH ₉) ₂	
			$[(CH_3)_3Sn]_2,$ $Pd[P(C_6H_5)_3]_4,$ THF	-	C ₂ H ₃ Sn(CH ₉) ₃ (48)	252
					(CH _a) _a Sn CON(CH _a) ₂	
	8 Br(CH ₂)	gC≡CCON(CH ₃) ₂	$[(CH_3)_3Sn]_2,$ $Pd[P(C_5H_6)_3]_4,$ THF	- 6	Br(CH ₉) ₃ Sn(CH ₉) ₉ (75)	252
	9 CH ₂ =CH	ICONHC₀H₀	n−C₄H ₉ Li, THF/TMEDA,	C ₈ H ₆ CHO	C ₆ H ₅ CONHC ₆ H ₆ n-C ₄ H ₉ (-)	229
			-65° to rt		9.	
	Į.	, M			"\n\"	
			LDA, THF, -70° to rt	CH₃I	(i-C ₃ H ₇) ₂ N (71)	190
551					n-C ₃ H ₇ //// N	
			t-C ₄ H ₉ Li, THF, -70° to rt	n−C ₃ H ₇ Br	$t-C_4H_9$ (85)	190
			n-C ₄ H ₂ Li, THF, -70° to rt	(CH ₃) ₂ C=CHCH ₂ Br	n-C ₄ H ₉ (75)	190

Carb No		α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Secti	ion A:	Amides				
			E-CH ₃ CH=CHMgBr, THF, -20° to rt	CH•I	(CH ₀) ₉ Sn	190
12		CH₂CH₂C≡CCON(CF	(CH ₃) ₃ SnCu • DMS, THF, -78°	СН₃І, НМРА	CON(C)	H ₃) ₂ 9
13	t-C ₄ H ₉ (CH₃)₂SiO(CH₂)₂C≡CCC	DN(CH ₃) ₂ (CH ₃) ₃ SnCu • DMS, THF, -78°	СН₃І, НМРА	(CH ₃) ₃ Sn t-C ₄ H ₆ (CH ₃) ₂ SiO (76)	CON(CH ₃) ₂
14	t-C ₄ H ₉ (CH₃)₂SiO(CH₂)₃C≡CCC	$DN(CH_3)_2$ $[(CH_3)_3Sn]_2$, $Pd[P(C_6H_6)_3]_4$, THF	-	(CH ₃) ₃ Sn t-C ₄ H ₆ (CH ₃) ₂ SiO(CH ₂) ₃ (63)	CON(CH ₃) ₂ Sn(CH ₃) ₃ 25
Sect	tion B:	Thioamides				
	(E)-CH	H ₃ CH=CHCSN(CH ₃) ₂	7-C4H9Li, THF, 0°	$(C_8H_8)_2S_2$	C_6H_6S $CSN(CH_6)$ $n-C_4H_9$ (77)))2 19
		,	-C ₄ H ₉ Li, THF, 0°	CH₂=CHCH₂Br, 0°	CH ₂ =CHCH ₂ CSN(CH n-C ₄ H ₉ (83)	I ₀) ₂
		n	-C ₄ H ₉ Li, THF, 0°	CH ₂ =CBrCH ₂ Br	CH ₂ =CBrCH ₂ CSN(CH n-C ₄ H ₉ (68)	6)2 194

Carbon No.	α, β-Unsaturated Substrate	Mucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Thioamides				
6 CH₂=C	(CH₃)CSN(CH₃)₂	n-C ₄ H ₉ Li, THF, 0°	CH₂=CHCH₂Br	$CH_2=CHCH_2$ $n-C_4H_9$ (81)	194
		C ₂ H ₅ MgBr, THF, -78°	СН₃СНО	CSN(CH _a) ₂ OH (85)	191
		C ₂ H ₆ MgBr, THF, -78°	i−C₃H ₇ CHO	i-C ₃ H ₇ CSN(CH ₃) ₂ OH (86)	191
		C ₂ H ₅ MgBr, THF, -78°	C ₆ H ₅ CHO	C _e H ₆ C _s H ₇ -n CSN(CH ₃) ₂ OH C _e H ₆ C _s H ₇ -n CSN(CH ₃) ₂	+ 191
		C ₂ H ₆ MgBr, THF, −78°	C₅H₅CHO	OH 41:59 (80) C ₈ H ₅ (80) C ₈ H ₇ -n CSN(CH ₃) ₂ OH C ₈ H ₅ (C ₃ H ₇ -n CSN(CH ₅ OH 8:92 (80)	+ 191
		i-C₃H ₇ MgBr, THF, -78°	сн₃сно	CSN(CH ₃) ₂ OH (95)	191

Carbon No.	α, β-Unsaturated Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Thioamides				
		<i>i</i> -C ₃ H ₇ MgBr, THF, -78°	C₂H₅CHO	C ₂ H ₆ C ₄ H ₉ -i CSN(CH ₃) ₂	19
		i–C ₂ H ₇ MgBr, THF, −78°	C₅H₅CHO	C_9H_6 C_4H_9-i $CSN(CH_3)_2$ C_9H_6 C_4H_9-i	+
		C₅H₅MgBr, THF,	Сн₃Сно	CSN(C OH 33:67 (83) CH ₂ C ₈ H ₆ CSN(CH ₃) ₂	H ₃) ₂
		-78°		(24)	19
		C _e H _e MgBr, THF, −78°	(E)−CH ₃ CH=CHCHO	CSN(CH ₃) ₂ OH (25) C ₆ H ₆	19
		C _e H ₅ MgBr, THF, -78°	(E)-C ₈ H ₅ CH=CHCHO	CSN(CH ₃) ₂ OH (48)	1
		C _e H _e MgBr, THF, -78°	С₅Н₅СНО	C ₆ H ₅ CH ₂ C ₆ H ₅ CSN(CH ₃) ₂	+
				C ₈ H ₅ CH ₂ C ₆ H ₆ CSN(CHO) OH 17:83 (81)	H ₃) ₂
\downarrow	S Si(CH₂)₃			i-C ₃ H ₇ -n	
15		C ₂ H ₈ MgBr, THF,	i-C₃H₁CHO	о́н (-)	19

Carb		ated Nucleophilic Reagent and Conditions	Neutral Intermedia Type		Product(s) and Yield(s) (%)	Ref.
4	CH ₂ =CHCOCH ₃	HMPA, -78°	A	HCI/CH₃OH, reflux	S S COCH ₃ (9)	40-
		CH ₃ OH, (C ₆ H ₆ CH ₂)(CH ₃)	A +- HOM	TsOH, toluene, reflux	(30)	124
5	(E)-CH₃CH=CHCOCH	HMPA, -78°	A	HCI/CH₃OH, reflux	S S COCH ₃	404
	Ů	 (CH₃)₂CuLi, -40° (CH₃)₃SiCl, (C₂H₅)₃N, HMPA 	S	1) CH ₃ Li, THF/HMPA 2) CS ₂ 3) LHMDS, THF, CH ₃ I	SCH ₃ SCH ₃ (70)	32
		1) n-C ₆ H ₁₁ Cu(C≡CC ₃ H ₇ -n)I OSi(CH ₃) ₂ C ₄ H ₉ -t, -78°, HMPA 2) (CH ₃) ₃ SiCl, (C ₂ H ₆) ₃ N	Li , S	1) LiNH ₂ , THF, NH ₃ (l) 2) CH ₂ =CHCH ₂ Br	OSi(CH ₃) ₂ C ₄ H ₉ -t (25)	280
		MgBr, cat. CuBr • DMS, THF/DMS, -78°	A	HCI/H₂O	OH (42)	7'
		CH ₃ CO(CH ₂) ₃ NO ₂ , LDA, CHCl ₃ , 60°	A	TsOH, C ₈ H ₈ , reflux	NO ₂ (71)	180

Nucleophilic Neutral Electrophilic Product(s) and Yield(s) (%) α , β -Unsaturated Carbon Ref. Reagent and Conditions Intermediate Reagent Substrate No. and Conditions Type (CH₂)₃CO₂CH₃ C₆H₁₁-n &CuLi LiNH₂, THF/NH₃, -78° (Z)-CH₃O₂C(CH₂)₃CH=CHCH₂Br 339 2) (CH₃)₃SiCl, (C₂H₅)₃N CEC(CH₂)₃CO₂CH₃ C6H11-n 1) (n-C6H11 S LiNH₂, THF/NH₃, OH CH₃O₂C(CH₂)₃C≡CCH₂I (19.5)339 2) (CH₃)₃SiCl, (C₂H₅)₃N (CH₂)₃CO₂CH₃ LiNH₂, THF/NH₃, C₈H₁₃-n 1) $[(E)-n-C_8H_{13}CH=CH]_2CuLi$, -40° (E)-CH₃O₂C(CH₂)₃CH=CHCH₂Br (58) 339 2) (CH₃)₃SiCl, (C₂H₆)₃N CH₂CH=CH₂ CH₃Li, THF, C_6H_6 1) (C₆H₅)₂CuLi, 0° 67 2) (CH₃)₃SiCl, (C₂H₆)₃N, CH2=CHCH2Br (42)CH₃Li, THF, 1) (C₈H₅)₂CuLi, 0° trans:cis, 4:96 67 2) (CH₃)₃SiCl, (C₂H₅)₃N, CeHeCu, 1 eq CH2=CHCH2B1 (43)CO₂CH₃ осн3 124 TsOH, toluene, (-)NaOCH₃, CH₃OH reflux Cu • P(C4H9-n)3 KH, rt, THF 82

> 4.9:1 cis:trans (55)

THF, -78°

560

Nucleophilic Neutral Electrophilic α , β -Unsaturated Product(s) and Carbon Ref. Reagent and Conditions Intermediate Reagent No. Substrate Yield(s) (%) Type and Conditions (CH₂)₃CO₂CH₃ 1) Li₂Cu(CH=CH₂)₂CN S 1) n-C₄H₉Li 86 2) Si(CH₃)₃Cl 2) B(C₂H₆)₃ (CH₂)₃CO₂CH₃ 3) CH₂CO₂ Pd[P(C6H6)3]4 (CH₂)₃CO₂CH₃)2CuLi OSi(CH₃)₂ C₄H₉, -t OSi(CH₃)₂C₄H₉-t 1) n-C₄H₉Li 2) Si(CH₃)₃Cl (54)86 2) B(C₂H₅)₃ (CH₂)₃CO₂CH₃ 3) CH₂CO₂ Pd[P(C6H5)3]4 Cu(CN)Li KH, THF, rt 120 THF, -78° 4.9:1 cis: trans (52)CH₂C₆H₆ OCH₃ CO₂CH₃ OSi(CH₃)₃, S TASF, pyridine, 131 TASF, THF, (26)THF, -70° C₆H₅CH₂Br CH₂CH=CH₂ OCH₃ CO₂CH₃ OSi(CH₃)₃, S TASF, pyridine, 131 TASF, THF, CH2=CHCH2Br (23)THF, -70° CH₂CH=CH₂ OSi(CH₃)₃ 131 S TASF, pyridine, CH₃NO₂, rt THF, CH2=CHCH2Br (13)

563

	Carbon α, β-U No. Sub	Insaturated Nucleophilic Reagent and Conditions	Neutral Intermediate Type	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	0	OSi(CH ₃) ₃ $SC_4H_9^-t,$ TBAF	S TB Br	AF, C≊C∕OC	CSC ₄ H ₉ -t C≥C (18)	132
564	,	Cu(SC ₈ H ₈)Li, T	, ,.,	o°, Dasic Al ₂ O ₃	(-60)	405
		$Cu(SC_8H_6)Li, 0$	° A 450	90	(41)	406
		CH ₂ =CH Cu(SC ₄		°, intramolecular	(80)	121
	6 (CH₃)₂C=CHCO		OAl(CH ₉)	CH ₃ CHO, toluene	OAI(CH ₀) ₂ OHC (68)	208
		(CH ₃) ₃ Al, 3 mol % Ni(acac) ₂ , -50°	oai(CH ₃)	C ₈ H ₆ CHO, toluene, -20°	OAI(CH ₃) ₂ OHC (C ₈ H ₅ C ₄ H ₉ -t (67)	208
565		(CH ₃) ₃ Al, 3 mol % Ni(acac) ₂ , −50°	OAl(CH ₃)	$(C_8H_8)_2C=C=O$, toluene	C ₉ H ₅ CHO C ₉ H ₆ C ₄ H ₉ -t (47) QH	208
		1) (CH ₃) ₃ Al, 3 mol % Ni(acac) ₂ , -50° 2) toluene, 150°	t-C₄H ₉ OAl(CH ₃)	1) CH ₃ CHO, C ₆ H ₆ 2) NH ₄ Cl/H ₂ O	C ₄ H ₉ -t 93:7 erythro:threo (52)	208

Nucleophilic Reagent Electrophilic Reagent Neutral Product(s) and Yield(s) (%) Carbon α , β -Unsaturated Ref. Intermediate No. Substrate and Conditions Type and Conditions QH OAI(CH₃)₂ t-C4H9 1) C₆H₆CHO, C4H9-t 1) (CH₃)₃Al, 3 mol % Ni(acac)2, -50° CeHe (60)208 2) toluene, 150° 2) NH₄Cl/H₂O OH CH₂SeC₆H₆ CH=CH₂ 1) (CH₂=CH)₂CuMgBr, THF, 1) CH₃Li, rt, 377 -70° (32)1.5 h 2) (CH₃)₃SiCl, (C₂H₅)₃N, 2) C₆H₅SeCH₂CHO, **HMPA** ZnCl₂, 0°, 5 min 1) LiNH2, NH3(1), 1) CH₂=CHMgBr, CuI, S 407 THF, -60° to -40° THF 2:1 trans:cis 408 HC≡C-2) HC≣C 2) (CH₃)₃SiCl, (C₂H₅)₃N, (57) 290 **HMPA** ,, 1) (CH2=CH)2CuMgBr, THF, S 1) CH₃Li, -70° THF/HMPA 4:1 trans:cis 290 (37)HC≡C-2) (CH₃)₃SiCl, (C₂H₅)₃N, 2)HC≡C **HMPA** CH2CO2CH3 1) (C₆H₆)₂CuLi, 0° S CH₃Li, HMPA C₆H₆ 67 2) (CH₃)₃SiCl, (C₂H₆)₃N CH₃O₂CCH₂Br (70)

566

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent I and Conditions	Neutral Intermedia Type	Electrophilic te Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
		C ₄ H ₉ -t OCH ₃ OCH ₃ THF, -60° (CH ₃) ₃ SiCl	s	SnCl ₄ , CH ₂ Cl ₂ , HC(OCH ₃) ₃	COCH ₃ (42)	101
	TH)-(CH ₃) ₃ SiCH=CH] ₂ CuMgl F, -70° H ₃) ₃ SiCl, (C ₂ H ₆) ₃ N, HMPA		1) CH ₃ Li 2) BrCH ₂ CO ₂ CH ₃	CH ₀ O ₂ C (CH ₀) ₀ Si 95:5 trans:cis (68)	100
		Cu •P(C ₄ H ₉ -n) ₉ Cl BF ₃ • (C ₂ H ₆) ₂ O, THF, -78°	A	KH, n, THF	(60)	82
	1) <i>n</i> -C	C₃H⁊C≡CCu(CH=CH₂)Li, F, HMPA, -60°	A	1) CH ₉ Li, THF	CH ₉ O (72) NOH CH ₂ Br	OH 409
	1) <i>n-</i> C TH	C ₂ H ₇ C≡CCu(CH=CH ₂)Li, F, HMPA, −60°	s	1) CH₃Li, THF	,, мон	409
	2) (CH	H₃)₃SiCl		2) CH ₉ O	CH₂Br (74)	

Nucleophilic Neutral Electrophilic Carbon α , β -Unsaturated Product(s) and Yield(s) (%) Ref. Reagent and Conditions Reagent and Conditions Intermediate No. Substrate Type 1) n-C₃H₇C≡CCu(CH=CH₂)Li, 1) CH₃Li, THF THF, HMPA, -60° (53)409 ЙОН 570 Cu(SC₆H₆)Li KH, THF, rt 120 THF, -78° (58)CH₂CO₂R HIIII CH2CO2Rª 1) LiCH2NC 298 S ö (-) 2) (CH₃)₂SiCl 2) AgO₃SCF₃ Cu(SC₆H₆)Li CH2=CH 180°, intramolecular 121 Si(CH₉)₂C₆H₅ 1) n-C₄H₉CHO, 1) [C₆H₆(CH₃)₂Si]₂CuLi, 63 THF, -23° TiCl4, CH2Cl2 (62)2) H⁺, C₈H₈, reflux 2) (CH₃)₃SiCl, (C₂H₅)₃N 571 (C₆H₅)₂CuLi, 0° 1) LDA, 1 eq, 67 CuCN, CH₃I, trans: cis, 35:65 **HMPA** (68)" 67 1) (C₆H₆)₂CuLi, 0° S 1) CH₃Li 2) (CH₃)₃SiCl, (C₂H₅)₃N 2) CH₃I, HMPA trans:cis, 93:7 (22)

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Neutral Intermedia Type	Electrophilic te Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
		(C ₈ H ₅) ₂ CuLi, 0° (CH ₃) ₃ SiCl, (C ₂ H ₅) ₃ N	s	CH ₃ Li, 2 mol % CH ₃ Cu, CH ₃ I, HMPA	trans:cis, 19:81 (35)	67
	1) 2)	(C ₆ H ₆) ₂ CuLi Br ₂ , -78°	Br C ₆ H ₆	(CH ₉)₂CuLi, CH ₉ I, HMPA	** ** ** ** ** ** ** ** ** **	67
	-40	₂ =C(CH ₃)CH ₂ CH ₂] ₂ CuLi, ₃ O ₂ C) ₂ O	В	SnCl ₄ , CH ₂ Cl ₂ /H ₂ O	(29) R H	410
		CI 25 mol % CuBr • DMS, BF ₃ • (C ₂ H ₆) ₂ O, THF, -7		KH, THF, n	(48)	82
	/	Cu(SC ₆ H ₆)Li Cl, THF, BF ₃ • (C ₂ H ₆) ₂ O, -78°	A	KH, THF, n	(56)	120
رُ		≻— Cu(SC ₈ H ₆)Li, 0°	A	450°	(17) (19)	406 371
رُ		O (CH ₂) ₃ MgCl B mol % CuBr • DMS, THF/DMS, -78°	A	THF/H ₂ O/HCl, reflux	(60)	411
		(CH ₃) ₂ CuLi, 0° (CH ₃) ₃ SiCl		1) CH₃Li 2) CH₂=C[Si(CH₃)₃]COC 3) CH₃OH/KOH	(50)	277

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Neutral Intermediate Type	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
) (CH ₉)₂CuLi, 0° c) (CH ₉)₃SiCl	2 3) CH ₃ Li,) CuI + CH ₃ Li) CH ₂ =C[Si(CH ₃) ₃]COC) CH ₃ OH/KOH	CH ₉ (38)	27
) (CH ₉)₂CuLi, 0°) (CH ₉)₃SiCl	2) CH ₃ Li, CuI) CH ₂ =C[Si(CH ₃) ₃]COC) CH ₃ OH/KOH	" "H ₃ (22)	277
) (CH ₉)₂CuLi, 0°) (CH ₉)₃SiCl	2) CH ₃ Li, then CH ₃ Cu) CH ₂ =C[Si(CH ₃) ₃]COC) CH ₃ OH/KOH	" (49)	277
		l) (CH ₃)₂CuLi, 0° c) (CH ₃)₃SiCl	2) CH₃Li, DME) CH₂=C[Si(CH₃)₃]COO) CH₃OH/KOH	" CH ₃ (51)	27
	1 2	.) (CH ₃)₂CuLi, 0° c) (CH ₃)₃SiCl	2) CH₃Li, THF :) CH₂=C[Si(CH₃)₃]COC i) CH₃OH/KOH	" CH ₃ (46)	277
) (CH ₂ =CH) ₂ CuMgBr, THF, -70° () (CH ₃) ₃ SiCl, (C ₂ H ₅) ₃ N, HMPA) CH ₃ Li,) C ₈ H ₈ SeCH ₂ CHO, ZnCl ₂	CH ₂ SeC ₈ H ₆ CH=CH ₂ (35)	377
) [CH ₂ =C(CH ₉)] ₂ CuMgBr ₁ THF, 0°) (CH ₉) ₃ SiCl, (C ₂ H ₆) ₃ N, HMPA	2) CH₃Li,) C₅H₅SeCH₂CHO,) ZnCl₂	OH CH ₂ SeC ₆ H ₆ (76)	377

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Neutral Intermedia Type	Electrophilic te Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
		н	D Li S S S N N N N N N N N N N N N N N N N	A	HCl/CH₃OH, reflux	S S O (56)	404
578			CO₂CH₃ H₃O OCH₃ CH₃ONa, CH₃OH	A	TsOH, toluene, reflux	o⇒(38) QH	124
			(CH ₃) ₂ CuLi, THF, −40° (CH ₃) ₃ SiCl	s	1) BH ₃ , DMS 2) H ₂ O ₂ /-OH	(70) OH	413
			(n-C ₈ H ₁₁) ₂ CuLi, THF, -40 (CH ₃) ₃ SiCl	0° S	1) BH ₃ , DMS 2) H ₂ O ₂ /−OH	C ₅ H ₁₁ -n (65)	413
			(n-C ₁₀ H ₂₁) ₂ CuLi, THF,	40° S	1) BH ₃ , DMS 2) H ₂ O ₂ /-OH	OH C ₁₀ H ₂₁ -n (58)	413
			(n-C ₁₆ H ₃₁) ₂ CuLi, THF, (CH ₃) ₃ SiCl	40° S	1) BH ₃ , DMS 2) H ₂ O ₂ /-OH	C ₁₆ H ₉₁ -n (55)	413
579			MgBr Cl , 25 mol % CuBr • DMS, THF, -78°	A	KH, THF, rt,	1:2 cis:trans (70)	82
			Cu(SC ₆ H ₆)Li Cl, THF, -78°	A	KH, THF, n,	0 H H (62)	120

	Carbon α, β-Unsaturate No. Substrate	NT1 1-11	Neutral Intermedi Type	Electrophilic ate Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
582		Cu(SC _e H _e)Li	A	1) 425°, 2) NaOCH ₃	(87)	371
		CH ₂ =CH Cu(SC ₈ H ₆))Li , A	180°	(75)	121
		CH ₂ =CH Cu(SC ₈ H ₆))Li , A	110°	(93)	121
		Cu(SC _e H _e))Li , A	222°	" (59)	121
		C ₆ H ₆ S)Cu /////////CH=C(CH ₆)	₂ , A	Xylene, reflux	(98)	415
583	7 (E)-(CH ₃) ₃ SiCH=CHCOCH ₃	1) (CH ₃) ₂ CuLi 2) (CH ₃) ₃ SiCl	s	1) C ₆ H ₆ SCHClC ₃ H ₇ -n, TiCl ₄ 2) Raney Ni	(CH ₃) ₃ Si C ₄ H ₉ -n (70)	251
	(CH ₃)₃SiC≡CCOCH₃	1) (CH ₃) ₂ CuLi 2) (CH ₃) ₃ SiCl	s	1) C ₆ H ₆ SCHClC ₃ H ₇ -n, ZnBr ₂	(CH ₃) ₃ Si n-C ₃ H ₇ SC ₆ H ₆	251

Electrophilic Nucleophilic Neutral Product(s) and Yield(s) (%) Carbon α, β-Unsaturated Ref. Reagent and Conditions Reagent and Conditions Intermediate Substrate No. Type HIII S 1) CH₃Li, THF/(C₂H₅)₂O 281 1) CH₂=CHMgBr, 10 mol % CuBr • DMS, THF, -78° (30)QC₂H₆ P(O)(OCH₃)₂ 2) (CH₃)₃SiCl, (C₂H₆)₃N, 2) **HMPA HMPA** 3) H+, acetone 4) NaH, DME CH2COCH2CO2C2H6 1) LiNH₂, THF/NH₃, CH₂CH=CH₂ 1) (CH₂=CHCH₂)₂ CuMgBr • DMS, S THF, -78° (64)235 CO2C2H6 OCH 3 2) (CH₃)₃SiCl, (C₂H₈)₃N 3) HCIO₄ OH MgBr, HCl, aqueous 416 CuBr • DMS, THF, -78° (79)acetone (CH₂)₃CO₂CH₃)2 CuLi•P(C4H9-n)3 LDA, THF, **OTHP** , A (Z)-CH₃O₂C(CH₂)₃CH=CHCH₂I (47) -78° 103 CO₂CH₃ осн₃ TsOH, toluene, 307 NaOCH₃, CH₃OH reflux (45-50)417 Cu(CN)Li KH, THF, rt 120 THF, -78° (58)

584

	Carbon α, β-Unsatur No. Substrate	rated Nucleophilic Reagent and Conditions	Neutral Intermediate Type	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
590		CH ₂ =CH Cu(SC ₆ H ₆)I	A 14:	5°, collidine	(37)	121
		Cu(SC ₆ H ₆)I	Li A 222	2°	" (14)	121
	Ů,	Cu(SC ₈ H ₆)Li, 0°	1) 2)	0° or LDA (CH₃)₃SiCl 425°	(26) (36) (40)	406 371 121
		MgBr, cat. CuBr • DMS, THF/DMS -78° to 0°		CI/H₂O	(70)	77
		CH ₃ O OCH ₃ NaOCH ₃ , CH ₃ OH		sOH, toluene, reflux	O (59)	124
591	CO ₂ CH ₃	LiCu $C_{6}H_{1} \cap n$ $OSi(CH_{3})_{2} C_{4}H_{9} - t$	A 1) N 2) I	NaH, THF ^=^^CO₂CH₃	MN-NN	CH ₉ -t 418
	s 200	O MgBr, CuBr • DMS, THF, -78°		Cl, aqueous acetone	OH (48)	416

Carbon No.	α, β-Unsatur Substrate	ated Nucleophilic Reagent and Conditions	Neutral Intermedia Type		Product(s) and Yield(s) (%)	Ref.
(5)-		1) MgBr, Cul • DMS, 0° 2) CH ₉ O ₂ CCl	В	1) CH₃Li, THF 2) (CH₃)₂N=CH₂Cl ⁻	N(CH ₃) ₂ (51)	144
(<i>R</i>)-	<u>.</u>	1) CH ₂ =CH(CH ₂) ₃ MgBr, (C ₂ H ₅) ₂ O/DMS, 10 mol % CuI 2) CH ₃ O ₂ CCl, 0° to rt	В	1) m-CPBA, CH ₂ Cl ₂ 2) CH ₃ Li, THF 3) (CH ₃) ₂ N=CH ₂ Cl ⁻ , CH ₃ I, K ₂ CO ₃		419
		1) CH ₂ =CH(CH ₂) ₂ MgBr, 10 mol % CuI, (C ₂ H ₅) ₂ O/DMS, 0° to rt 2) (CH ₃) ₃ SiCl	S	1) CH ₃ Li, THF 2) (CH ₃) ₂ N=CH ₂ Ci ⁻ , CH ₃ I, K ₂ CO ₃	(42)	420
0	ТНР Н	OCu(C≣CC₃H ₇ -n)L	i, A	 NaH, C₆H₆, HCO₂C₂H₆ LDA, THF, CH₃I 	THPO (45)	301
	Br	Cu(SC ₆ H ₅)Li, 0°	A	450°	(23)	406
(MgBr, 10 mol % CuI, THF, -20°	A	5% HCl, C₂H₅OH, reflux	22:78 cis:trans (36)	91

595

Nucleophilic Electrophilic Neutral Product(s) and Yield(s) (%) Carbon α, β-Unsaturated Ref. Reagent and Conditions Reagent and Conditions Intermediate No. Substrate Type 1) CH₃Li, DME 91 MgBr, S then (CH₃)₃SiCl, 2) CH₃I (21) $(C_2H_6)_3N$ Cu(CN)Li CI, THF, KH, THF, rt 120 (47)BF₃ • (C₂H₅)₂O, -78° (CH₂)₃CO₂CH₃ C6H11-n)2 CuLi • P(C4H9-n)3 CH₃CO₂ LDA, THF, -78°, OTHP -78° (Z)-CH₃O₂C(CH₂)₃CH=CHCH₂I (6) 103 1) m-CPBA 2) t-C4H9OK, 315 t-C4HOH MgBr KH, THF, rt 82 25 mol % CuBr • DMS, 8:1 cis:trans BF₃ • (C₂H₅)₂O, -78°, THF (40)HO CH₂=CH(CH₂)₂CuMgBr • BF₃, 1) O₃, CH₃OH/CH₂Cl₂ 91 -78° 2) HCI/H2O/HOAc (44)

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Neutral Intermedia Type	Electrophilic te Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
⇔		 (CH₂=CH)₂CuLi, DMS, -75° (CH₉)₃SiCl, HMPA, (C₂H₆)₉N 	s	1) O ₃ , CH ₃ OH 2) aq. HCl	(69)	32:
		1) (CH ₃) ₂ CuLi, DMS, -75° 2) (CH ₃) ₃ SiCl, (C ₂ H ₅) ₃ N, HMPA	s	1) O ₃ , CH ₃ OH 2) aq. HCl	(CH ₉) ₉ Si	329
10 (CH ₃)		1) (CH ₉)₂CuLi 2) (CH ₉)₃SiCl	s	C ₃ H ₇ -n, TiCl ₄	C ₄ H ₉ -t SC ₈ H ₆ (76)	251
					(CH ₁)	,)₃CO₂CH, -n
СН₃С	O ₂ CH ₂	OTHP	, A	1) LDA, THF 2) (Z)-CH ₃ O ₂ C(CH ₂) ₃ C	O ₂ CH ₂ C OTHP	10
\bowtie	o H	MgBr Cl, 0.3 eq CuBr • DMS, TH	A F,	KH, THF, n	(66) o	323
11 🖒	SC ₈ H ₆	C ₂ H ₅ O ₂ CCHLiCH ₃ , CuI • P(OCH ₃) ₃	A	1) NaH, THF 2) CH ₃ I	SC ₆ H ₆ CO ₂ C ₂ H ₆ (48)	90
		C ₂ H ₆ O ₂ CCHLiCH ₃ , CuI • P(OCH ₃) ₃	A	1) LDA, THF 2) CH ₃ I	" (16)	90

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Neutral Intermediate Type	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
						"	
			H ₆ O₂CCHLiCH ₃ , CuI • P(OCH ₃) ₃) LDA, 1 eq HMPA, THF) CH₃I	(19)	90
S						,,	
598			H ₅ O ₂ CCHLiCH ₃ , CuI • P(OCH ₃) ₃) LDA, 3 eq HMPA, THF) CH₃I	(35)	90
						**	
			H ₈ O ₂ CCHLiCH ₃ , CuI • P(OCH ₃) ₃) LICA, THF, 1 eq CuI) CH ₃ I, rt	(13)	90
						**	
			H ₆ O ₂ CCHLiCH ₃ , CuI • P(OCH ₃) ₃) LICA, 2 eq HMPA, THF) CH ₃ I	(25)	90
						"	
			H ₈ O ₂ CCHLiCH ₃ , CuI • P(OCH ₃) ₃) LTMP, 2 eq HMPA, THF) CH ₃ I	(39)	90
						"	
			H ₆ O ₂ CCHLiCH ₃ , CuI • P(OCH ₃) ₃) LHMDS, THF,) CH₃I	(22)	90
						"	
599			H ₆ O ₂ CCHLiCH ₃ , CuI • P(OCH ₃) ₃) LHMDS, 2 eq HMPA, THF) CH₃I	(22)	90
						O CH₂C≡CC₂H ₆ SC ₆ H ₅	
			I ₃ O ₂ CCH ₂ CO ₂ CH ₃ , NaOCH ₃ , CH ₃ OH, 0°	Α (C ₂ H ₆ C≡CCH ₂ Br, NaH, DME	CO ₂ CH ₂ cis:trans, 1.6:1 (53)	125

Carbon No.	α , β-Unsaturate Substrate	ed Nucleophilic Reagent In and Conditions	Neutral ntermedia Type	Electrophilic te Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	(n-C ₆ H ₁	$Cu(CH_2C = CC_3H_7-n)Li$ $OSi(CH_3)_2 C_4H_9-t$	A	1) NaH, THF	SC ₆ H ₅ (CH ₂) ₃ C C ₆ H ₁₁ - Si(CH ₉) ₉ (CH-CHCH Po	n C ₄ H ₉ -t
600				2) (Z)-CH ₃ O ₂ C(CH ₂) ₃ (SC ₆ H ₅ (CH ₂) ₃	119 CO₂CH₃
		(n-C ₆ H ₁₁)Cu(SC ₆ H ₆)L OTHP	i , A	 NaH, THF (Z)-CH₃O₂C(CH₂)₃ 	OTHP (8) CH=CHCH ₂ Br	n 119
		p-C ₆ H ₆ C ₆ H ₄ Li, cat. [(n-C ₄ H ₉) ₃ P] ₄ • CuI, -78°	A	KH, DME, p-C ₆ H ₆ C ₆ H ₄ CH ₂ Br	CH ₂ C ₈ H ₄ C ₈ H ₅ -p SC ₈ H ₆ C ₈ H ₄ C ₈ H ₅ -p (39) stereochemistry not stated	421
	SeC ₆ H ₅	(CH ₃) ₃ Si C ₁ C ₂ H ₅ AlCl ₂ , CH ₂ Cl ₂ , -78°	A	KOC ₄ H ₉ -t, 2/1 THF/t-C ₄ H ₉ OH	C _e H _e Se (46)	213
		(CH ₃) ₂ CuLi, -20°	A	1) LDA, THF/HMPA 2) C ₂ H ₆ C≡CCH ₂ Br	CH₂C≡CC₂H ₆ (91) OH	383
601	X	O MgBr CuBr • DMS, THF, -78°	A	нсі, н₂о/тнғ	(48)	416
		Cat. CuI	A	HCI/THF/H₂O	" (69)	326

Carbon No.	α, β-Unsaturated Substrate	d Nucleophilic Reagent and Conditions	Neutral Intermediat Type	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
p-	-CH ₃ C ₆ H ₄ IIIIS					
13		(p-CH ₃ C ₈ H ₄) ₂ CuLi, THF, -78°	A	(HOCH ₂) ₂ , TsOH, C ₆ H ₆ , reflux	p-CH ₃ C ₆ H ₄ (50)	239
					P-CH ₃ C ₆ H ₄ SO ₂	
		(p-CH ₃ C ₆ H ₄) ₂ CuLi, THF, -78°		1) m-CPBA 2) KOC ₄ H ₉ -t, CH ₃ I	p-CH ₃ C ₆ H ₄ (25)	240
	î 🔷				8.	
16	<i>/</i>	1) (CH ₃) ₂ CuLi 2) (CH ₃) ₃ SiCl, (C ₂ H ₅) ₃ N	s	TiCl ₄ , CH ₂ Cl ₂	(54)	73
	\(\frac{1}{2}\)(n	-C ₆ H ₁₁	₉ -n) ₃	<i>t-</i> C.H.(C.	H ₆) ₂ SiOCH ₂ (CH ₁₁ -	₂) ₃ CO ₂ CH ₃ -n
23 t-C ₄ H	I _g (C _g H _g) ₂ SiOCH ₂	OTHP		LDA, THF, (Z)-CH ₃ O ₂ C(CH ₂) ₃ (OTHP	103

a R = Undefined.

rbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Neutral Intermediat Type	Electrophilic e Reagent and Condition	Vield(s)	Ref.
4 trans-	-CH₃CH=CHCO₂CH₂CH=CH₂	[C ₈ H ₅ (CH ₉)₂Si]₂CuLi		1) LDA 2) C _e H ₅ CHO 3) H ₂ /Pd	C ₈ H ₅ (CH ₃) ₂ Si C ₈ H ₅ (54) C ₈ H ₅ (CH ₃) ₂ Si	400
trans-	CH₃CH=CHCO₂CH₂C₅H₅	[C ₆ H ₆ (CH ₉)₂Si]₂CuLi	-	1) LDA 2) <i>i</i> −C₂H₂CHO 3) H₂/Pd	(54) C ₈ H ₅ (CH ₃) ₂ Si OH	400
		[C ₈ H ₅ (CH ₃) ₂ Si] ₂ CuLi		1) LDA OHC Si(C	Si(CO ₂ CH ₂ C ₆ H CH ₃) ₂ C ₆ H ₅ (71)	(CH ₃)₂C ₆ H ₅ 5 400
СН₃	C≡CCO ₂ C ₂ H ₆	(CH ₂) ₃ SnCu • DMS, THF, −48°	A	1) 1.1 eq CH₃Li, THF	CO ₂ C ₂ H ₆ Sn(CH ₃) ₃ (~61)	94
				2) CH ₃ I	CO ₂ C ₂ H ₆	
		(CH ₃)₃SnCu • DMS, THF, -48°		1) 1.1 eq CH ₃ Li, THF 2) Br	Sn(CH ₃) ₃ (-57) CO ₂ C ₂ H ₅	94
		(CH ₃) ₃ SnCu • DMS, THF, −48°		1) 1.1 eq CH ₃ Li 2) C ₈ H ₅ CH ₂ Br	Sn(CH ₃) ₃ (~55)	94
		(CH ₃)₃SnCu • DMS, THF, -48°		1) 1.1 eq CH₃Li, THF 2) n-C₄H ₈ I	n-C ₄ H ₉ CO ₂ C ₂ H ₅ Sn(CH ₃) ₃ (~36) OH CO ₂ C ₂ H ₆	94
		(CH ₃) ₃ SnCu • DMS, THF, −48°		1) 1.1 eq CH ₃ Li, THF 2) cyclohexanone	Sn(CH ₃) ₃	94

Carl		β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Neutral Intermedia Type	te	Electrophilic Reagent nd Conditions	Product(s) and Yield(s)	Ref.
	сн₃о₂с	CO₂CH₃ C III C	(n-C ₄ H ₉) ₂ CuLi, THF, -78°	A	LDA,	THF	CO ₂ CH C ₄ H ₉ -n (75)	a s
66			(CH ₂ =CHCH ₂ CH ₂) ₂ CuMgBr, THF, -78°	A	LDA,	тнғ	CO ₂ CH ₃ (CH ₂) ₂ CH= (69)	5
			(C ₂ H ₆) ₂ CuMgBr, THF, -78°	A	LDA,	ТНБ	Co ₂ CH C ₈ H ₅ (53)	ja S
			THF, -78°	Вr, A	LDA,	THF	CO ₂ CH (CH ₂) ₃ —	· -<`
10	CH₂OTHP		-C ₆ H ₁₁) ₂ CuLi•P(C ₄ H ₆ OTHP	,-n)₃ , A	LDA,	THF, CH ₃ O₂C(CH₂)₃ ⁽	6 Jun -	(CH ₂) ₃ CO ₂ C ₅ H ₁ , n P
	t−C ₄ H ₉ O ₂	CO₂CH₃ C C C C	(<i>i</i> −C ₃ H ₇) ₂ CuMgCl, THF, −78°	A	LDA,	THF	i-C ₃ H ₇ (52)	H _g −t
11	p−CH ₃ C _e l		2) Raney Ni	, s	1) LD 2) CF	a, thf, hmpa ^H 9O ← C	CH ₃ O OCH ₃ (52)	42
					СН	I ₂ O OCH ₃		

aSee addendum to Table V for additional entries.

Carbo No.	οn α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
3	CH ₂ =CHCN	i-C₃H7I, Zn, CH3CN, reflux	(CH₃)₂CO	HO CN i-C₃H₁7 (98) OH	257
613			C₀H₀CHO	C ₈ H ₆ CN i-C ₃ H ₇ (94)	257
			Cyclohexanone	i-C₃H ₇ (99)	257
			Cyclopentanone	OH CN i-C ₃ H ₇ (92)	257
			C₂H₅CHO	OH C ₂ H ₈ CN <i>i</i> -C ₃ H ₇ (65) OH	257
613		Cyclohexyl iodide, Zn, CH ₃ CN, reflux	(CH₃)₂CO	(95) OH	257
		n-C₃H₁I, Zn, CH₃CN, reflux	(CH ₃) ₂ CO	n-C ₃ H ₇ (63)	257
		CH ₃ I, Zn, CH ₃ Cn, reflux	(CH₃)₂CO	OH CN (52)	257

Carbo No.	n α, β-Unsaturate Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
		C ₆ H ₆ CH ₂ Br, Zn, CH ₃ CN, reflux	(CH₃)₂CO	OH CN C _e H ₆ CH ₂ (46)	25
		(CH ₃) ₃ SiCH ₂ CH ₂ O ₂ CCH ₃ , Pd[P(C ₆ H ₆) ₃] ₄ Toluene, 60°	Intramolecular	(35) CN	21:
4	(E)-CH₃CH=CHCN	i-C₃H¬I, Zn, CH₃CN, reflux	C₀H₀CHO	OH C ₀ H ₅ CN <i>i</i> -C ₀ H ₇ (95)	257
	CH ₂ =C(CH ₃)CN	i-C₃H₂I, Zn, CH₃CN, reflux	C _e H _e CHO	OH C ₈ H ₈ CN <i>i</i> -C ₃ H ₇ (73)	257
		i-C ₃ H ₇ I, Zn, (CH ₃) ₂ CO, reflux	(CH ₃)₂CO	HO CN i-C ₃ H ₇ (72)	25
		CH ₃ O ₂ CCHClCH ₃ , NaH, toluene	Intramolecular	3:1 cis: trans (59)	279
6	CH ₂ =CHP(O)(OC ₂ H ₆) ₂	(CH ₉)₂CuLi	CH₂=CHCH₂X	CH ₂ =CHCH ₂ P(O)(OC ₂ H ₆) ₂ (-)	25
		(n−C4He)2CuLi	CH ₂ =CHCH ₂ X	$CH_2=CHCH_2$ $P(O)(OC_2H_6)_2$ $n-C_4H_8$ $(-)$	258

9	Carbon α, β-Unsaturated No. Substrate	d Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
616	C ₂ H ₅ O	R₂CuLi	R'X	C ₂ H ₆ O P P R (-) R = CH ₃ , n-C ₄ H ₉ , n-C ₉ H ₁₇ R' = CH ₂ =CHCH ₂ , CH ₃ , n-C ₇ H ₁₆	258
		(n-C ₆ H ₁₁) ₂ CuLi OSi(CH ₉) ₂ C ₄ H ₉ -t	CH ₃ O ₂ C(CH ₂) ₈ I	C ₂ H ₆ O P (CH ₂) ₆ CO ₂ CH ₃ C ₆ H ₁₁ -n OSi(CH ₃) ₂ C ₄ H ₉ -t (-)	258
	NC CN	CH ₂ O ₂ C SH, Triton B, C ₈ H ₆	Intramolecular	NC CN CO ₂ CH ₉	146
	NC CN	CH ₉ O ₂ C SH, Triton B, C ₈ H ₈	Intramolecular	CO ₂ CH ₃ (70) OSCH ₃	146
617	CH ₉ SO ₂ P(O)(OC ₂ H ₅) ₂	CH ₉ SO SCH ₃ Li , THF, -70°, 1 h	(E)-C ₈ H ₅ CH=CHCHO, reflux, 3 h	CH ₉ SO ₂ CH ₉ SO ₂ C ₈ H ₆ (≥56) OSCH ₉	165
		CH ₃ SO SCH ₃ Li , THF,	(E)-n-C ₃ H ₇ CH=CHCHC reflux, 3 h	CH ₉ SO ₂ CH ₉ SO ₂ C ₃ H ₇ -n (≥27)	165

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
				OH SOC ₈ H ₄ Cl-p	
		$(n-C_4H_9)_2$ CuLi, $(C_2H_6)_2$ O/DMS, -60°	C ₂ H ₆ CHO, -60° to rt	n-C ₄ H ₉ (13)	
				CH ₂ =CHCH ₂ SOC _e H ₄ Cl-p	
		$(n-C_4H_9)_2$ CuLi, $(C_2H_6)_2$ O/DMS, -60°	CH ₂ =CHCH ₂ Br, -60° to rt	n-C ₄ H ₆ (73) C ₆ H ₆ OH	
				C ₆ H ₆ OH SOC ₆ H ₄ Cl-p	
		$(t-C_4H_9)_2$ CuLi, $(C_2H_6)_2$ O/DMS, -78°	(C ₆ H ₅) ₂ CO, -60° to rt	t-C ₄ H ₉ (45)	
, I	(CH₂)₃COCH₃			ин Лирон	
11	I	(CH ₃) ₂ CuLi, −20°	Intramolecular	(80-90)	24
	12 (Z22)			SO ₂ C ₆ H ₆	
	SO ₂ C ₈ H ₅	(CH ₉) ₉ SiCH ₂ CH ₂ O ₂ CCH ₃ Pd[P(C ₈ H ₆) ₉] ₄ THF,	, Intramolecular	(58)	2
		reflux		5	
13		CH I: HMBA	CU -CUCU P- 200	CH ₂ =CHCH ₂	
15		CH ₃ Li, HMPA, -78°, 160 min	CH ₂ =CHCH ₂ Br, -78° 20 min; then -78° to 25°, 30 min	89:11 cis:trans (90)	26
				G	
		CH ₃ Li, HMPA, -78°, 160 min	(Z)-CH ₃ CCl=CHCH ₂ Cl, -78°, 80 min	70:30 E:Z (90)	26

	Carb No		Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
	14	$(CH_3)_3$ Si $SO_2C_3H_5$ $i-C_3H_7$	CH₃Li, THF, -78°, 10 min	CH ₂ =CHCH ₂ Br, -78° to rt	$(CH_9)_9Si$ $CH_2=CHCH_2$ $i-C_9H_7$ (55)	423
622	15	$t-C_4H_9(CH_9)_2SiO$	O (CH ₂) ₂ Br Li -100°, 30 min; then -100° to rt, 1 h	Intramolecular	so ₂ C ₄ t-C ₄ H ₆ (CH ₆) ₂ SiO (75)	H ₉ -t
	16	$t-C_4H_6(CH_3)_2SiO$	CH ₂) ₂ Cl Li -78°, 30 min; then -78° to rt, 1 h	Intramolecular	sO ₂ C ₄ t-C ₄ H ₉ (CH ₃) ₂ SiO (78)	H ₉ -t 424
			CH ₃ O (CH ₂) ₂ Cl Li , -78°, 30 min; -78° to rt, 1 h	Intramolecular	CH ₃ O t-C ₄ H ₆ (CH ₃) ₂ SiO (81)	i _e -t 424
623			CH ₃ O (CH ₂) ₂ Cl CH ₃ O Li -100°, 30 min; then -100° to rt, 1 h	Intramolecular	CH ₃ O CH ₃ O t-C ₄ H ₄ (CH ₃) ₂ SiO (80)	H ₉ − <i>i</i> 424
		9	(CH ₂) ₂ Br Li -100°, 30 min; then -100° to rt, 1 h	Intramolecular	t-C ₄ H ₆ (CH ₃) ₂ SiO (79)	I _e -t 424
			(CH ₂) ₂ Cl Li -78°, 30 min; then -78° to rt, 1 h	Intramolecular	(71)	424

Carbon No.	α,	β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
t−C ₄ H _g (O₂C ʻ	C ₄ H _e -t	CH₂=C(CH₃)MgBr, THF	1) CH ₉ I, HMPA 2) citric acid 3) NaBH ₄	35:22 trans:cis (57)	26
t- C₄H ₉ (Br O	CH₃ t-C₄HgLi, -78°	Intramolecular	OCH ₃ SO ₂ C ₄ H ₉ -t (73)	42:
t-C₄Hg(C	H ₉)₂:	N(CH ₃) ₂ SO ₂ C ₆ H	C ₅ H ₁₁ -n C ₅ H ₁₁ -n OSi(CH ₉) ₂ C ₄ H ₉ -t THF, -78°	I CO ₂ CH ₃ ,	t-C₄H ₉ (CH ₃)₂SiÔ	C ₈ H ₁₁ −n CH ₉) ₂ C ₄ H ₉ −1 282
			Li $C_6H_{11}-n$ C	, Br\\=\\CO ₂ CH ₃ ,	54:3, trans:cis	259
			Li $C_6H_{11}-n$ $C_6H_{11}-n$ $C_6H_{11}-n$ $C_6H_{11}-n$ $C_6H_{11}-n$ $C_6H_{11}-n$ $C_6H_{11}-n$ $C_6H_{11}-n$ $C_6H_{11}-n$	Br	$t-C_4H_9(CH_9)_2SiO$ $OSi($ (87)	C ₆ H ₆ C ₆ H ₁₁ -n (CH ₃) ₂ C ₄ H ₉ - 259
			Li C ₅ H ₁₁ -n OSi(CH ₃) ₂ C ₄ H ₉ -t, THF, -78°	Br\CN	t-C ₄ H ₉ (CH ₃) ₂ SiO	C ₆ H ₁₁ -n (CH ₃) ₂ C ₄ H ₉ - 259

Carbon No.	φ, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
20	P(C ₆ H ₆) ₃ Br	C _e H _e COCHCILi, THF/DMF, -78°; then 25°, 24 h	Intramolecular	C ₆ H ₆ CO (61)	26
		C ₈ H ₈ COCHBrLi, THF/DMF, -78°; then 25°, 24 h	Intramolecular	" (70)	20
		C ₈ H ₈ COC(CH ₃)ClLi, THF/DMF, -20°; then 25°, 24 h	Intramolecular	" (53)	26
	(^s)			(s)	
21 t-C4H8	SO ₂ C ₆ (CH ₉) ₂ SiO	Li C ₆ H ₁₁ -n OSi(CH ₃) ₂ C ₄ H ₉ -t, THF	I_CO5CH3	t-C ₄ H ₄ (CH ₃) ₂ SiO	SO ₂ C ₆ H ₅ CO ₂ Cl SO ₂ C ₆ H ₇ C ₆ H ₁ Cosi(CH ₃) ₂ C ₄ H 2
	\ 1			¥	

C	Carbon α, β-Unsaturat No. Substrate	ed Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
S	Section A: Acyclic Substra	tes			
	6 (CH ₉)₂C=CHCOCH ₉	OSi(CH ₃) ₂ C ₄ H _e -t OCH ₃ 5 mol % trityl perchlorate, CH ₂ Cl ₂ , -78°	C₀H₅CHO	CH ₃ O ₂ C OSi(CH ₃ C ₈ H) ₂ C ₄ H ₆ -t
	10 (E)-C ₆ H ₅ CH=CHCOCH ₃	OTMS 1) , 5-10 mol % trityl perchlorate, CH ₂ Cl ₂ , -78° 2) H ⁺	Intramolecular	C ₆ H ₆ (62)	13
		OTMS 1) C ₈ H ₅ , 5-10 mol % trityl perchlorate, CH ₂ Cl ₂ , -78 2) H ⁺		C ₈ H ₈ (72)	13
	(E)−CH ₃ CH=CHCOC ₆ H ₆	OTMS 1) , 5-10 mol % trityl perchlorate, CH ₂ Cl ₂ , -78° 2) H ⁺	Intramolecular	C ₈ H ₆ (68)	13
		OTMS C ₈ H ₆ , 5-10 mol % trityl perchlorate, CH ₂ Cl ₂ , -78 2) H ⁺	6 Intramolecular •	C _e H ₅ (78)	13
	15 (E)-C _e H _e CH=CHCOC _e H _e	OSi(CH ₉) ₂ C ₄ H ₉ -t OC ₂ H ₈ 5 mol % trityl perchlorate, CH ₂ Cl ₂ , -78°	C _e H _e CHO	C ₂ H ₆ O ₂ C C ₈ H ₆ OSi(CH ₆ C ₈ H ₆ C ₈ H ₆	
		OSi(CH ₃) ₂ C ₄ H ₉ -t OC ₂ H ₅ 5 mol % trityl perchlorate, CH ₂ Cl ₂ , -78°	n-C₅H₁₁CHO	$C_2H_5O_2C$ C_8H_6 C_8H_6 C_8H_6 C_8H_8 C_8H_8	₉) ₂ C ₄ H ₉ -t H ₁₁ -n

	Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	ef.
	Section A:	Acyclic Substrates				
630	27	Fe P(C ₈ H ₆) ₃	C _e H _e CH ₂ NHLi, THF, -78°	CH₃I, −78°	CO P(C ₆ H ₆) ₃ NHCH ₂ C ₆ H ₆ (13)	224
	28	CO ₂ C ₂ H ₈	t-C₄H ₉ Li	СН₃І	P(C ₆ H ₆) ₃ CO ₂ C ₂ H ₆ (73)	201
	Br ~	CO ₂ C ₂ H ₆	n−C₄H ₉ Li	Intramolecular	$CO_{2}C_{2}H_{6}$ $P(C_{8}H_{6})_{3}$ $C_{4}H_{9}^{-n}$ (87)	201
	~ @	Feith P(C, H,),	CH₃Li, THF, -40°C, 2 h	CH ₃ I, 2 eq -78°, 2 h	CO P(C ₈ H ₆) ₉ Fe (60)	225
631			n-C₄H ₉ Li, THF, -78°, 2 h	CH ₃ I, 2 eq -78°, 2 h	CO P(C H)	225
			C ₈ H ₆ CH ₂ NHLi, THF, -78°, 2 h	CH ₃ I, 4 eq -78°, 1 h	P(C ₈ H ₈) ₃ NHCH ₂ C ₆ H ₅ O CO ₂ C ₂ H ₅	225
	I	CO ₂ C ₂ C ₂ C ₂ C ₃ C ₄ C ₆ C ₉ C ₆ C ₉ C ₇ C ₉	₂H₅ t-C₄H₂Li	C ₆ H ₆ CH ₂ Br	C ₈ H ₈ P(C ₈ H ₈) ₃	201

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section A:	Acyclic Substrates				
		t−C₄HgLi	BrCH₂CO₂CH₃	CH ₃ O ₂ C P(C ₈ H	CO ₂ C ₂ H ₆ + + + + + + + + + + + + + + + + + + +
				Br P(4	, CO₂C₂H,
	P(C ₈ H ₆) ₃ CO ₂ C ₂ H ₆	n−C ₄ H ₉ Li	Intramolecular	$CO_2C_2H_6$ $CO_2C_2H_6$ C_4H_9-n (48)	
I	P(C ₈ H ₆)) ₃ ₂ C ₂ H ₅ _t -C ₄ H ₉ Li	C₂H₅I	O CO ₂ C ₂ H ₀ P(C ₈ H ₉) ₃ (78)	,

TABLE I. ALDEHYDES AND KETONES—ADDENDA (Continued)					
Carbon No.	α , β -Unsaturated Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
Section B:	Cyclic Substrates				
5	Li 🔀	O SC _e H ₆ , THF	CH₃CO₂CN, -60°	SOC _e H	s 15
		OSi(CH ₃) ₂ C ₄ H ₉ -t OCH ₃ 5 mol % trityl perchlo	C ₈ H ₅ (CH ₂)₂CHO	OSi(CH ₃) ₂ C ₄ H ₉ -t	+
		CH₂Cl₂, −78°		OSi(CH ₉) ₂ CO ₂ Ci	C _e H _e
				(77)	13
			NO ₂	NO ₂	
	n-C ₄ I -78	$H_{g}Cu \cdot 2P(C_{4}H_{g}-n)_{3},$, -78°, 20 min; -30°, 10 min; 0° 5 min	C ₄ H ₉ -n (66)	28
Ý	ļ ~	P(O)(C ₆ H ₆) ₂ C ₆	H ₆ SO ₂		P(O)(C ₈ H ₈)
6	_/ ti	, THF	-20°C, 5 min	Z:E = 3:97 (76)	15
	Y.	$P(O)(C_6H_6)_2$ C_6I	H ₀ SO ₂		P(0)(C ₆ I
	—	, im	-20°C, 5 min	Z:E = 1:1	15

636

637

2) H+

Product(s) and Yield(s) (%) Nucleophilic Reagent Electrophilic Reagent Carbon α , β - Unsaturated Ref. No. Substrate and Cond. and Cond. Section B: Cyclic Substrates $P(O)(C_6H_6)_2$ P(O)(C₈H₆)₂ CoHoSO2 , THF Z:E = <3:>97155 (64) $P(O)(C_6H_6)_2$ P(O)(C₆H₆)₂ C₆H₆SO₂ , THF Z:E = 6:94155 (53)OSi(CH₃)₂C₄H₉-t OSi(CH₃)₂C₄H₉-t OCH₃ C₆H₆(CH₂)₂CHO 5 mol % trityl perchlorate, CH2Cl2, -78° 133 $OSi(CH_3)_2C_4H_9-t$ CO2CH3 91:9 (63) + isomer **OTMS** C₆H₆, 5-10 mol % trityl Intramolecular 134 perchlorate, CH2Cl2, -78°C 4:1 2) H+ (74)OSi(CH₃)₂C₄H₉-t 5-10 mol % 134 Intramolecular trityl perchlorate, CH2Cl2, -78°C (55)

 $\begin{array}{c} \alpha \text{ , } \beta \text{ - } Unsaturated & Nucleophilic Reagent} \\ \text{Substrate} & \text{and Cond.} \end{array}$ Product(s) and Yield(s) (%) Carbon Electrophilic Reagent Ref. No. and Cond.

Section B: Cyclic Substrates

C	Carbon α, β-Unsaturated No. Substrate	Nucleophilic Reagent and Conditions	Electrophilic Reagent and Conditions	Product(s) and Yield(s) (%)	Ref.
S	Section A: Esters				
	3 HC≡CCO₂CH₃	(i-C₄H ₉) ₂ AlH, HMPA, THF, 0°, 1 h	Br, rt, 15 h	CO ₂ CH ₃	21
	6 CO ₂ C ₂ H ₆	NaOC ₂ H ₅ , C ₂ H ₅ OH, 10-15°, 2 h	Cyclohexanone	O CN (40)	29
	7 n-C ₃ H ₇ CO ₂ C ₂ H ₆	NaOC ₂ H ₆ , C ₂ H ₆ OH, 10-15°, 2 h	Cyclohexanone	C ₃ H ₇ -n (20)	29
	CO ₂ C ₂ H ₆	NaOC ₂ H ₆ , C ₂ H ₆ OH, 10-15°, 2 h	Cyclohexanone	0 0 CN	25
	8 CO ₂ C ₂ H ₆	NaOC ₂ H ₅ , C ₂ H ₅ OH, 10-15°, 2 h	Cyclohexanone	(50) CN	29
	9 CO ₂ C ₂ H ₆	NaOC ₂ H ₆ , C ₂ H ₆ OH, 10-15°C, 2h	Cyclohexanone	O CN (75)	29

Carbon No.	α, β-Unsaturated Substrate	Nucleophilic Reagent and Conditions	Neutral Intermediate Type	Electrophilic Reagent and Conditions	Product(s) and Yield(s)	Ref.
3 CH	H₂=CHCO₂CH₃	OCH ₃ 1) OCH ₃ OLi , TH 0°, 5 h 2) NH ₄ Cl		Cl/CH₃OH, reflux	CH ₆ O O	300
		OCH ₃ OLi , oo, 5 h		Cl/CH₃OH, reflux	CH ₉ O O O O O O O O O O O O O O O O O O O	300
4 (E)-СН₃СН=СНСО₂СН₃	OCH ₃ OLi O°, 5 h 2) NH ₄ Cl		Cl/CH₃OH, reflux	CH ₉ O O (40)	300
		OCH ₃ OLi , 7		Cl/CH₃OH, reflux	CH ₉ O O	300

9. Acknowledgments

The authors wish to express their thanks to E.I. Du Pont de Nemours and Co., Inc. and the Pharmaceutical Research Information Science Section of ICI Pharmaceuticals Group for bibliographic assistance. M. H. thanks the University of Maryland Graduate School, Baltimore, for a Faculty Summer Fellowship. The aid of Ms. Tracy Amoroso, Ms. Carolyn Roy, and Ms. Chris O'Neal in preparing this manuscript is gratefully recognized.

References

- 1. M. Ohno, J. Synth. Org. Chem. Jpn., 10, 923 (1980).
- 2. G. Brieger and J. N. Bennett, Chem. Rev., **80**, 63 (1980).
- 3. A. G. Fallis, Can. J. Chem., 62, 183 (1984).
- 4. G. Stork and P. F. Hudrlik, J. Am. Chem. Soc., 96, 4462 (1968).
- 5. A. P. Marchand, in *The Chemistry of Functional Groups*, Supp. A, Part I, S. Patai, Ed., Wiley, New York, 1977, pp. 534–607 and 625–635.
- 6. J. F. Normant and A. Alexakis, Synthesis, 1981, 841.
- 7. H. Mayr and W. Striepe, J. Org. Chem., **48**, 1159 (1983).
- 8. J. K. Groves, Chem. Soc. Rev., 1, 73 (1972).
- 9. P. de Mayo, Acc. Chem. Res., **4**, 41 (1971).
- 10. S. W. Baldwin, *Organic Photochemistry*, A. Padwa, Ed., Vol. **5**, Marcel Dekker, New York, 1981, **5**, p. 123.
- 11. A. Padwa, Angew. Chem. Int. Ed. Engl., 15, 123 (1976).
- G. Stork, P. M. Sher, and H.-L. Chen, J. Am. Chem. Soc., 108, 6384 (1986).
- 13. H. Nishiyama, K. Sakuta, and K. Itoh, Tetrahedron Lett., 1984, 2487.
- 14. M. Suzuki, T. Kawagishi, T. Suzuki, and R. Noyori, Tetrahedron Lett., 1982, 4057.
- 15. E. P. Kohler, Am. Chem. J., 29, 352 (1903).
- 16. E. P. Kohler and M. Tishler, J. Am. Chem. Soc., **54**, 1594 (1932).
- E. P. Kohler and W. D. Peterson, J. Am. Chem. Soc., 55, 1073 (1933).
- 18. R. A. Kretchmer, J. Org. Chem., **37**, 2744 (1972).
- 19. R. A. Kretchmer, J. Org. Chem., 37, 2747 (1972).
- 20. D. T. Warner and O. A. Moe, J. Am. Chem. Soc., **70**, 3470 (1948).
- 21. O. Wallach, Justus Liebigs Ann. Chem., **359**, 265 (1908).
- 22. E. Knoevenagel and E. Reinecke, Ber. Dtsch. Chem. Ges., **32**, 418 (1899).
- 23. L. Ruzicka, Helv. Chim. Acta, 3, 781 (1920).
- 24. A. Bellamy, J. Chem. Soc. B, 1969, 449.
- G. Stork, P. Rosen, N. Goldman, R. V. Coombs, and J. Tsuji, J. Am. Chem. Soc., 87, 275 (1956).
- 26. G. Stork, Pure Appl. Chem., 17, 383 (1968).
- 27. H. O. House, Acc. Chem. Res., 9, 59 (1976).
- 28. S. R. Krauss and S. G. Smith, J. Am. Chem. Soc., 103, 141 (1981).
- 29. P. Four, H. Riviere, and P. W. Tang, Tetrahedron Lett., 1977, 3879.
- 30. J. Berlan, J.-P. Battioni, and K. Koosha, Bull. Soc. Chim. Fr. II, 1979,

- 31. R. A. J. Smith and D. J. Hannah, Tetrahedron, 35, 1183 (1979).
- 32. C. P. Casey and M. C. Cesa, J. Am. Chem. Soc., 101, 4236 (1979).
- 33. E. C. Ashby, R. S. Smith, and A. B. Goel, J. Org. Chem., **46**, 5133 (1981).
- 34. F. Leyendecker, J. Drouin, J. J. DeBesse, and J. M. Conia, Tetrahedron Lett., **1977**, 1591.
- 35. C. Frejaville, R. Jullien, H. Stahl-Lariviere, M. Wanat, and D. Zann, Tetrahedron, **38**, 2671 (1982).
- 36. B. Gustafsson, A.-T. Hansson, and C. Ullenius, Acta Chem. Scand. B, **34**, 113 (1980).
- 37. F. Leyendecker, F. Jesser, and B. Ruhland, Tetrahedron Lett., **1981**, 3601.
- 38. J.-M. Lefour and A. Loupy, Tetrahedron, **34**, 2597 (1978).
- 39. G. Ouannes, G. Dressaire, and Y. Langlois, Tetrahedron Lett., **1977**, 815.
- 40. G. H. Posner, *An Introduction to Synthesis Using Organocopper Reagents*, Wiley, New York, 1980.
- 41. D. J. Hannah and A. J. Smith, Tetrahedron Lett., 1975, 187.
- 42. S. R. Krauss, Ph.D. Dissertation, University of Illinois, 1979.
- 43. H. O. House and P. D. Weeks, J. Am. Chem. Soc., 97, 2770 (1975).
- 44. H. O. House and P. D. Weeks, J. Am. Chem. Soc., 97, 2778 (1975).
- 45. H. O. House and P. D. Weeks, J. Am. Chem. Soc., **97**, 2785 (1975).
- 46. H. O. House, A. V. Prabhu, J. M. Wilkins, and L. F. Lee, J. Org. Chem., **41**, 3067 (1976).
- 47. R. A. J. Smith and D. J. Hannah, Tetrahedron Lett., 1980, 1081.
- 48. D. J. Hannah, R. A. J. Smith, I. Teoh, and R. T. Weavers, Aust. J. Chem., **34**, 181 (1981).
- 49. G. Hallnemo, T. Olsson, and C. Ullenius, J. Organomet. Chem. C, **265**, 22 (1984).
- 50. G. Hallnemo, T. Olsson, and C. Ullenius, J. Organomet. Chem., **282**, 133 (1985).
- 51. E. J. Corey and N. W. Boaz, Tetrahedron Lett., **1984**, 3059; 3063.
- 52. E. J. Corey and N. W. Boaz, Tetrahedron Lett., **1985**, 6015; 6019.
- 53. G. Hellnemo and C. Ullenius, Tetrahedron Lett., 1986, 395.
- 54. E. C. Ashby and T. L. Wiesemann, J. Am. Chem. Soc., **100**, 3101 (1978).
- 55. W. C. Still, J. Org. Chem., 41, 3063 (1976).
- 56. L. Wartski, M. El-Bouz, and J. Seyden-Penne, J. Organomet. Chem.,

- **177**, 17 (1979).
- 57. H. O. House and J. M. Wilkins, J. Org. Chem., 41, 4031 (1976).
- 58. D. G. Batt, N. Takamura, and B. Ganem, J. Am. Chem. Soc., **106**, 3353 (1984).
- 59. J. d'Angelo, Tetrahedron, 32, 2979 (1976).
- 60. E. C. Ashby and J. N. Argyropoulos, Tetrahedron Lett., 1984, 7.
- 61. E. C. Ashby and J. N. Argyropoulos, J. Org. Chem., **50**, 3274 (1985).
- 62. T. Lund and H. Lund, Tetrahedron Lett., 1986, 95.
- 63. D. J. Ager, I. Fleming, and S. K. Patel, J. Chem. Soc., Perkin Trans. 1, **1981**, 2520.
- 64. H. S. Binkley and C. H. Heathcock, J. Org. Chem., 40, 2156 (1975).
- 65. W. G. Dauben, G. J. Fonken, and D. S. Noyce, J. Am. Chem. Soc., **78**, 2579 (1956).
- 66. A. V. Kamernitzky and A. A. Akhrem, Russ. Chem. Rev., Engl. Transl., 1961, 43.
- 67. G. H. Posner and C. M. Lentz, J. Am. Chem. Soc., 101, 934 (1979).
- Y. Ito, M. Nakatsuka, and T. Saegusa, J. Am. Chem. Soc., 104, 7609 (1982).
- 69. R. J. K. Taylor, Synthesis, 1985, 364.
- 70. J. F. Normant, J. Organomet. Chem., 1, 219 (1976).
- 71. G. H. Posner, Org. React., 19, 1 (1972).
- 72. M. S. Kharasch and P. O. Tawney, J. Am. Chem. Soc., 63, 2308 (1941).
- 73. A. Alexakis, M. J. Chapdelaine, G. H. Posner, and A. W. Runquist, Tetrahedron Lett., **1978**, 4205.
- 74. J.-B. Wiel and F. Rouessac, Bull. Soc. Chim. Fr. II, 1979, 273.
- 75. R. D. Clark, Synth. Commun., **9**, 325, 1979.
- 76. G. Stork and J. d'Angelo, J. Am. Chem. Soc., **96**, 7114 (1974).
- 77. A. Marfat and P. Helquist, Tetrahedron Lett., 1978, 4217.
- 78. J. Cairns, C. L. Hewett, R. T. Logan, G. McGarry, D. F. M. Stevenson, and G. F. Woods, J. Chem. Soc., Perkin Trans. 1, 1976, 1558.
- 79. W. P. Jackson and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, **1981**, 1516.
- 80. S. Torii, H. Tanaka, and Y. Nagai, Bull. Chem. Soc. Jpn., **50**, 2825 (1977).
- 81. A. B. Smith, III and P. J. Jerris, J. Org. Chem., 47, 1845 (1982).
- 82. E. Piers and B. W. A. Yeung, J. Org. Chem., **49**, 4567 (1984).
- 83. B. H. Lipshutz, Synthesis, 1987, 325.
- 84. B. H. Lipshutz, R. S. Wilhelm, and J. A. Kozlowski, J. Org. Chem., **49**, 3938 (1984).

- 85. B. H. Lipshutz, R. S. Wilhelm, and J. A. Kozlowski, Tetrahedron, 40, 5005 (1984).
- 86. F.-T. Luo and E. Negishi, J. Org. Chem., **50**, 4762 (1985).
- 87. W. A. Nugent and F. W. Hobbs, J. Org. Chem., 51, 3376 (1986).
- 88. K. C. Nicolaou, W. E. Barnette, and P. Ma, J. Org. Chem., **45**, 1463 (1980).
- 89. M. Suzuki, A. Yanagisawa, and R. Noyori, J. Am. Chem. Soc., **107**, 3348 (1985).
- 90. J.-M. Fang, J. Org. Chem., 47, 3464 (1982).
- 91. C. H. Heathcock, C. M. Tice, and T. C. Germroth, J. Am. Chem. Soc., **104**, 6081 (1982).
- 92. Y. Yamamoto and K. Maruyama, J. Am. Chem. Soc., 100, 3240 (1978).
- 93. H. Nishiyama, M. Saski, and K. Itoh, Chem. Lett., 1981, 905.
- 94. E. Piers and J. M. Chong, J. Org. Chem., **47**, 1602 (1982).
- 95. E. Piers, J. M. Chong, and B. A. Keay, Tetrahedron Lett., 1985, 6265.
- 96. E. J. Corey and J. A. Katzenellenbogen, J. Am. Chem. Soc., **91**, 1851 (1969).
- 97. J. B. Siddall, M. Biskup, and J. H. Fried, J. Am. Chem. Soc., **91**, 1853 (1969).
- 98. H. Sugihara, R. Tanikaga, K. Tanaka, and A. Kaji, Bull. Chem. Soc. Jpn., **51**, 655 (1978).
- 99. M. T. Crimmins, S. W. Mascarella, and J. A. DeLoach, J. Org. Chem., **49**, 3033 (1984).
- 100. S. E. Denmark and J. P. Germanas, Tetrahedron Lett., 1984, 1231.
- 101. K. Yamamoto, M. lijima, Y. Ogimura, and J. Tsuji, Tetrahedron Lett., **1984**, 2813.
- 102. W. Bernhard, I. Fleming, and D. Waterson, J. Chem. Soc., Chem. Commun., **1984**, 28.
- 103. A. G. Pernet, H. Nakamoto, N. Ishizuka, M. Aburatani, K. Nakahashi, K. Sakamoto, and T. Takeuchi, Tetrahedron Lett., **1979**, 3933.
- 104. C. J. Kowalski and J.-S. Dung, J. Am. Chem. Soc., **102**, 7950 (1980).
- 105. E. Piers and V. Karunaratne, Can. J. Chem., **62**, 629 (1984).
- 106. A. Alexakis, J. Berlan, and Y. Besace, Tetrahedron Lett., 1986, 1047.
- 107. W. H. Mandeville and G. M. Whitesides, J. Org. Chem., 39, 400 (1974).
- 108. G. H. Posner, C. E. Whitten, J. J. Sterling, and D. J. Brunelle, Tetrahedron Lett., **1974**, 2591.
- 109. T. Olsson, M. T. Rahman, and C. Ullenius, Tetrahedron Lett., 1977, 75.
- 110. J. P. Marino and R. J. Linderman, J. Org. Chem., **46**, 3696 (1981).
- 111. R. D. Stevens and C. E. Castro, J. Org. Chem., 28, 3313 (1963).

- 112. T. Tanaka, S. Kurozumi, T. Toru, M. Kobayashi, S. Miura, and S. Ishimoto, Tetrahedron, **33**, 1105 (1977).
- 113. G. H. Posner and C. M. Lentz, Tetrahedron Lett., 1978, 3769.
- 114. G. H. Posner, M. J. Chapdelaine, and C. M. Lentz, J. Org. Chem., **44**, 3661 (1979).
- 115. G. H. Posner, C. E. Whitten, and J. J. Sterling, J. Am. Chem. Soc., **95**, 7788 (1973).
- 116. S. H. Bertz, G. Dabbagh, and G. M. Villacorta, J. Am. Chem. Soc., **104**, 5824 (1982).
- 117. S. H. Bertz and G. Dabbagh, J. Chem. Soc., Chem. Commun., **1982**, 1030.
- G. H. Posner, J. J. Sterling, C. E. Whitten, C. M. Lentz, and D. J. Brunelle, J. Am. Chem. Soc., 97, 107 (1975).
- 119. S. Kurozumi, T. Toru, T. Tanaka, M. Kobayashi, S. Miura, and S. Ishimoto, Tetrahedron Lett., **1976**, 4091.
- 120. E. Piers and V. Karunaratne, J. Chem. Soc., Chem. Commun., **1983**, 935.
- 121. E. Piers, H. E. Morton, I. Nagakura, and R. W. Thies, Can. J. Chem., **61**, 1226 (1983).
- E. D. Bergmann, D. Ginsberg, and R. Pappo, Org. React., 10, 179 (1959).
- 123. A. Alexakis, M. J. Chapdelaine, and G. H. Posner, Tetrahedron Lett., 1978, 4209.
- 124. S. Danishefsky and S. J. Etheredge, J. Org. Chem., 47, 4791 (1982).
- 125. H. J. Monteiro, J. Org. Chem., 42, 2324 (1977).
- 126. J. Wiemann, L. Bobic-Korejzl, Y. Allamagny, and H. Normant, C. R. Acad. Sci. Paris C, **268**, 2037 (1969).
- 127. W. Oppolzer and R. Pitteloud, J. Am. Chem. Soc., **104**, 6478 (1982).
- 128. R. D. Little and J. R. Dawson, Tetrahedron Lett., 1980, 2609.
- 129. M. Yamaguchi, M. Tsukamoto, and I. Hirao, Tetrahedron Lett., **1985**, 1723.
- 130. S. N. Suryawanshi and P. L. Fuchs, Tetrahedron Lett., 1984, 27.
- 131. T. V. RajanBabu, J. Org. Chem., 49, 2083 (1984).
- 132. H. Gerlach and P. Kunzler, Helv. Chim. Acta, 61, 2503 (1978).
- 133. S. Kobayashi and T. Mukaiyama, Chem. Lett., 1986, 1805.
- 134. T. Mukaiyama, Y. Sagawa, and S. Kobayashi, Chem Lett., 1986, 1821.
- 135. T. Siwapinyoyos and Y. Thebtaranonth, Tetrahedron Lett., 1984, 353.
- 136. C. Thanupran, C. Thebtaranonth, and Y. Thebtaranonth, Tetrahedron Lett., **1986**, 2295.

- 137. G. H. Posner, Chem. Rev., 86, 831 (1986).
- 138. K. B. White and W. Reusch, Tetrahedron, **34**, 2439 (1978).
- 139. R. A. Lee, Tetrahedron Lett., **1973**, 3333.
- 140. M. Ihara, M. Toyota, K. Fukumoto, and T. Kametani, Tetrahedron Lett., 1985, 1537.
- 141. M. Joucla, B. Fouchet, J. LeBrun, and J. Hamelin, Tetrahedron Lett., 1985, 1221.
- 142. R. M. Cory and R. M. Renneboog, J. Org. Chem., 49, 3898 (1984).
- 143. G. H. Posner, S.-B. Lu, and E. Asirvatham, Tetrahedron Lett., **1986**, 659.
- 144. S. Danishefsky, P. Harrison, M. Silvestri, and B. Segmuller, J. Org. Chem., 49, 1319 (1984).
- 145. T. Shono, Y. Matsumura, S. Kashimura, and K. Hatanaka, J. Am. Chem. Soc., 101, 4752 (1979).
- 146. E. Anklam and P. Margaretha, Helv. Chim. Acta, 67, 2206 (1984).
- 147. E. Campaigne and R. K. Mehra, J. Heterocycl. Chem., **14**, 1337 (1977).
- 148. M. A. Gianturco, P. Friedel, and A. S. Giammarino, Tetrahedron, **20**, 1763 (1964).
- 149. Y. Tamura, T. Tsugoshi, S. Mohri, and Y. Kita, J. Org. Chem., **50**, 1542 (1985).
- 150. D. N. Jones and M. R. Peel, J. Chem. Soc., Chem. Commun., **1986**, 216.
- 151. M. R. Binns and R. K. Haynes, J. Org. Chem., 46, 3790 (1981).
- 152. J. Nokami, T. Ono, S. Wakabayashi, A. Hazato, and S. Kurozumi, Tetrahedron Lett., **1985**, 1985.
- 153. F. M. Hauser and D. Mal, J. Am. Chem. Soc., 106, 1098 (1984).
- 154. R. K. Haynes and A. G. Katsifis, J. Chem. Soc., Chem. Commun., 1987, 340.
- 155. S. K. Haynes and S. C. Vonwiller, J. Chem. Soc., Chem. Commun., 1987, 92.
- 156. Y. Takahashi, K. Isobe, H. Hagiwara, H. Kosugi, and H. Uda, J. Chem. Soc., Chem. Commun., **1981**, 714.
- 157. F. Cooke, P. Magnus, and G. L. Bundy, J. Chem. Soc., Chem. Commun., **1978**, 714.
- 158. G. B. Mpango and V. Snieckus, Tetrahedron Lett., 1980, 4827.
- 159. F. E. Ziegler and J. A. Schwartz, Tetrahedron Lett., 1975, 4643.
- 160. Y. Asano, T. Kamikawa, and T. Tokoroyama, Bull. Chim. Soc. Jpn., **49**, 3232 (1976).
- 161. R. Dhal, Y. Nabi, and E. Brown, Tetrahedron, **42**, 2005 (1986).

- 162. R. E. Damon, R. H. Schlessinger, and J. F. Blount, J. Org. Chem., **41**, 3772 (1976).
- 163. K. Tomioka, T. Ishiguro, and K. Koga, J. Chem. Soc., Chem. Commun., 1979, 652.
- 164. F. E. Ziegler, J.-M. Fang, and C. C. Tam, J. Am. Chem. Soc., **104**, 7174 (1982).
- T. Minami, K. Nishimura, J. Hirao, H. Suganuma, and T. Agawa, J. Org. Chem., 47, 2360 (1982).
- 166. K. Ogura, N. Yahata, M. Minoguchi, K. Ohtsuki, K. Takahashi, and H. lida, J. Org. Chem., **51**, 508 (1986).
- 167. T. Cohen and L.-C. Yu, J. Org. Chem., **50**, 3266 (1985).
- 168. G. H. Posner and E. Asirvatham, Tetrahedron Lett., 1986, 663.
- 169. R. Burstinghaus and D. Seebach, Chem. Ber., **110**, 841 (1977).
- 170. H. J. Bestmann and F. Seng, Angew. Chem. Int. Ed. Engl., **1**, 116 (1962).
- 171. W. G. Dauben, D. J. Hart, J. Ipaktschi, and A. P. Koxikowski, Tetrahedron Lett., **1973**, 4425.
- 172. J. P. Freeman, J. Org. Chem., 31, 538 (1966).
- 173. P. A. Grieco and R. S. Finkelhor, Tetrahedron Lett., 1972, 3781.
- 174. R. M. Cory and D. M. T. Chan, Tetrahedron Lett., 1975, 4441.
- 175. R. M. Cory, D. M. T. Chan, Y. M. A. Naguib, M. H. Rastall, and R. M. Renneboog, J. Org. Chem., **45**, 1852 (1980).
- 176. R. M. Cory, Y. M. A. Naguib, and M. H. Rasmussen, J. Chem. Soc., Chem. Commun., **1979**, 504.
- 177. J. N. Babler and K. P. Spina, Tetrahedron Lett., 1985, 1923.
- 178. A. Krief, M. J. Devos, and M. Sevrin, Tetrahedron Lett., 1986, 2283.
- 179. R. M. Cory, P. C. Anderson, F. R. McLaren, and B. R. Yamamoto, J. Chem. Soc., Chem. Commun., 1981, 73.
- 180. G. A. Macalpine, R. A. Raphael, A. Shaw, A. W. Taylor, and H.-J. Wild, J. Chem. Soc., Perkin Trans. 1, **1976**, 410.
- 181. M. J. Devos and A. Krief, Tetrahedron Lett., 1979, 1891.
- 182. M. Samson, H. DeWilde, and M. Vandewalle, Bull. Soc. Chim. Belg., **86**, 329 (1977).
- 183. E. Hatzigrigoriou, M.-C. Roux-Schmitt, L. Wartski, and J. Seyden-Penne, Tetrahedron, **39**, 3415 (1983).
- 184. E. Hatzigrigoriou and L. Wartski, Synth. Commun., 13, 319 (1983).
- 185. E. Hatzigrigoriou and L. Wartski, Bull. Soc. Chim. Fr. II, 1983, 313.
- 186. J. A. Noguez and L. A. Maldonado, Synth. Commun., 6, 39 (1976).
- 187. N. Seuron and J. Seyden-Penne, Tetrahedron, **40**, 635 (1984).

- 188. M. Britten-Kelly, B. J. Willis, and D. H. R. Barton, Synthesis, 1980, 27.
- 189. E. Vedejs and B. Nader, J. Org. Chem., 47, 3193 (1982).
- 190. G. B. Mpango, K. K. Mahalanabis, Z. Mahdavi-Damghani, and V. Snieckus, Tetrahedron Lett., **1980**, 4823.
- Y. Tamaru, T. Hioki, S. Kawamura, H. Satomi, and Z. Yoshida, J. Am. Chem. Soc., 106, 3876 (1984).
- 192. G. H. Posner, J. P. Mallamo, M. Hulce, and L. L. Frye, J. Am. Chem. Soc., **104**, 4180 (1982).
- 193. S. Knapp and J. Calienni, Synth. Commun., 10, 837 (1980).
- 194. Y. Tamaru, T. Harada, H. Iwamoto, and Z. Yoshida, J. Am. Chem. Soc., **100**, 5221 (1978).
- 195. R. W. Franck, V. Bhat, and C. S. Subramanian, J. Am. Chem. Soc., **108**, 2455 (1986).
- 196. M. P. Cooke, Jr., J. Org. Chem., **51**, 1637 (1986).
- 197. M. P. Cooke, Jr. and R. Goswami, J. Am. Chem. Soc., 99, 642 (1977).
- 198. M. P. Cooke, Jr., J. Org. Chem., 47, 4963 (1982).
- 199. M. P. Cooke, Jr. and D. L. Burman, J. Org. Chem., 47, 4955 (1982).
- 200. L. S. Liebeskind and M. E. Welker, Tetrahedron Lett., 1985, 3079.
- 201. M. P. Cooke, Jr. and R. K. Widener, J. Org. Chem., **52**, 1381 (1987).
- 202. S. Chao, F. A. Kunng, J.-M. Gu, H. L. Ammon, and P. S. Mariano, J. Org. Chem., 49, 2708 (1984).
- 203. T. A. Hase and P. Kukkola, Synth. Commun., **10**, 451 (1980).
- 204. A. Itoh, S. Ozawa, K. Oshima, and H. Nozaki, Tetrahedron Lett., **1980**, 361.
- 205. M. Suzuki, T. Kawagishi, and R. Noyori, Tetrahedron Lett., 1981, 1809.
- 206. W. C. Still, J. Am. Chem. Soc., 99, 4836 (1977).
- 207. E. C. Ashby and G. Heinsohn, J. Org. Chem., **39**, 3297 (1974).
- E. A. Jeffery, A. Meisters, and T. Mole, J. Organomet. Chem., 174, 365, 373 (1974).
- 209. J. Schwartz and Y. Hayasi, Tetrahedron Lett., 1980, 1497.
- 210. J. Schwartz, M. J. Loots, and H. Kosugi, J. Am. Chem. Soc., **102**, 1333 (1980).
- 211. T. Tsuda, T. Yoshida, T. Kawamoto, and T. Saegusa, J. Org. Chem., **52**, 1624 (1987).
- 212. M. F. Semmelhack, L. Keller, T. Sato, E. J. Spiess, and W. Wulff, J. Org. Chem., **50**, 5566 (1985).
- 213. S. Knapp, U. O'Connor, and D. Mobilio, Tetrahedron Lett., 1980, 4557.
- 214. R. L. Danheiser, D. J. Carini, and A. Basak, J. Am. Chem. Soc., 103, 1604 (1981).

- 215. B. M. Trost and D. M. T. Chan, J. Am. Chem. Soc., 101, 6429 (1979).
- 216. D. T. Warner, J. Org. Chem., 24, 1536 (1959).
- 217. J. A. Marshall, J. E. Audia, and B. G. Shearer, J. Org. Chem., **51**, 1730 (1986).
- 218. E. G. Gibbons, J. Org. Chem., 45, 1540 (1980).
- 219. M. Zervos and L. Wartski, Tetrahedron Lett., 1986, 2985.
- 220. K. K. Heng and R. A. K. Smith, Tetrahedron, 35, 425 (1979).
- 221. R. M. Coates and L. O. Sandefur, J. Org. Chem., 39, 275 (1974).
- 222. M. Kato, H. Saito, and A. Yoshikoshi, Chem. Lett., 1984, 213.
- 223. S. G. Davies and J. C. Walker, J. Chem. Soc., Chem. Commun., **1985**, 209.
- 224. S. G. Davies, I. M. Dordor-Hedgecock, K. H. Sutton, and J. C. Walker, Tetrahedron Lett., **1986**, 3787.
- 225. S. G. Davies, I. M. Dordor-Hedgcock, K. H. Sutton, J. C. Walker, R. H. Jones, and K. Prout, Tetrahedron, **42**, 5123 (1986).
- 226. G. H. Posner, S.-B. Lu, E. Asirvatham, E. F. Silversmith, and E. M. Shulman, J. Am. Chem. Soc., **108**, 511 (1986).
- 227. P. A. Grieco and R. Finkelhor, J. Org. Chem., 38, 2100 (1973).
- 228. B. W. Roberts, M. Ross, and J. Wong, J. Chem. Soc., Chem. Commun., **1980**, 428.
- 229. J. E. Baldwin and W. A. DuPont, Tetrahedron Lett., 1980, 1881.
- 230. D. Liotta, M. Saindane, C. Barnum, and G. Zima, Tetrahedron, 41, 4881 (1985).
- 231. G. H. Posner and C. Switzer, J. Am. Chem. Soc., **108**, 1239 (1986).
- 232. R. K. Boeckman, Jr., J. Org. Chem., 38, 4450 (1973).
- 233. M. Tada and T. Takahashi, Chem. Lett., 1978, 275.
- 234. K. K. Heng and R. A. J. Smith, Tetrahedron Lett., 1975, 589.
- 235. L. A. Paquette, G. D. Annis, and H. Schostarez, J. Am. Chem. Soc., **104**, 6646 (1982).
- 236. S. Danishefsky, K. Vaughan, R. C. Gadwood, and K. Tsuzuki, J. Am. Chem. Soc., **103**, 4136 (1981).
- 237. C. R. Johnson and T. D. Penning, J. Am. Chem. Soc., 108, 5655 (1986).
- 238. S. F. Martin, Tetrahedron, **36**, 419 (1980).
- 239. G. H. Posner and T. P. Kogan, J. Chem. Soc., Chem. Commun., **1983**, 1481.
- 240. G. H. Posner, T. P. Kogan, and M. Hulce, Tetrahedron Lett., 1984, 383.
- 241. S. Danishefsky, K. Vaughn, R. Gadwood, K. Tsuzuki, and J. P. Springer, Tetrahedron Lett., **1980**, 2625.
- 242. For examples of 1,6-conjugate addition: (a) see reference 71; (b) J. A.

- Marshall, R. A. Ruden, L. K. Hirsch, and M. Phillippe, Tetrahedron Lett., 1971, 3795; (c) F. Barbot, A. Kadib-Elban, and P. Miginiac, J. Organomet. Chem., 225, 1 (1983); (d) B. R. Davis and S. J. Johnson, J. Chem. Soc., Chem. Commun., 1978, 614; (e) S. Danishefsky, W. E. Hatch, E. Abola, and J. Pletcher, J. Am. Chem., 95, 2410 (1973); (f) J. M. Schwab, R. J. Parry, and B. M. Foxman, J. Chem. Soc., Chem. Commun., 1975, 906; (g) F. Barbot, A. Kabid-Elban, and P. Miginiac, Tetrahedron Lett., 1983, 5089; (h) J. Biggora, J. Font, C. Jaime, R. M. Ortuno, and F. Sanchez-Ferrando, Tetrahedron, 41, 5577 (1985); (i) see Reference 73.
- 243. See F. Pietra, Chem. Rev., 73, 293 (1973).
- 244. G. Buchi, D. Berthet, R. Decorzant, A. Grieder, and A. Hauser, J. Org. Chem., 41, 3208 (1976).
- 245. B. A. Barner and A. I. Meyers, J. Am. Chem. Soc., **106**, 1865 (1984).
- 246. A. I. Meyers and D. Hoyer, Tetrahedron Lett., 1984, 3667.
- 247. E. P. Kundig and D. P. Simmons, J. Chem. Soc., Chem. Commun., **1983**, 1320.
- 248. A. Marfat, P. R. McGuirk, and P. Helquist, J. Org. Chem., **44**, 3888 (1979).
- 249. J. P. Marino and R. J. Linderman, J. Org. Chem., 48, 4621 (1983).
- 250. J. Klein and R. Levene, J. Chem. Soc., Perkin Trans. 2, 1973, 1972.
- 251. I. Fleming and D. A. Perry, Tetrahedron, **37**, 4027 (1981).
- 252. E. Piers and R. T. Skerlj, J. Chem. Soc., Chem. Commun., 1986, 626.
- 253. R. M. Carlson, A. R. Oyler, and J. R. Peterson, J. Org. Chem., **40**, 1610 (1975).
- 254. D. Caine and T. L. Smith, Synth. Commun., 10, 751 (1980).
- 255. M. Bertrand, G. Gil, and J. Viala, Tetrahedron Lett., 1977, 1785.
- 256. D. Seebach, E. W. Colvin, F. Lehr, and T. Weller, Chimica, 33, 1 (1979).
- 257. T. Shono, I. Nichiguchi, and M. Sasaki, J. Am. Chem. Soc., **100**, 4314 (1978).
- 258. R. Bodalski, T. Michalski, J. Monkiewicz, and K. M. Pietrusiewicz, in Phosphorus Chemistry, Proceedings of the 1981 International Conference, L. D. Quin and J. G. Verkade, Eds., American Chemical Society, Washington, 1981, pp. 243–246.
- 259. R. E. Donaldson, J. C. Saddler, S. Byrn, A. T. McKenzie, and P. L. Fuchs, J. Org. Chem., **48**, 2167 (1983).
- 260. P. L. Fuchs and T. F. Braish, Chem. Rev., **86**, 903 (1986).
- 261. E. J. Corey and D. L. Boger, Tetrahedron Lett., 1978, 9.
- 262. K. Tomioka, F. Masumi, T. Yamashita, and K. Koga, Tetrahedron Lett., **1984**, 333.

- 263. G. H. Posner, J. P. Mallamo, and A. Y. Black, Tetrahedron, **37**, 3921 (1981).
- 264. E. J. Corey, K. Niimura, Y. Konishi, S. Hashimoto, and Y. Hamada, Tetrahedron Lett., **1986**, 2199.
- 265. M. Obayashi, K. Utimoto, and H. Nozaki, Tetrahedron Lett., 1977, 1805.
- 266. H. Alper and J.-F. Petrignani, J. Chem. Soc., Chem. Commun., **1983**, 1154.
- 267. H. O. House, *Modern Synthetic Reactions*, 2nd ed., W. A. Benjamin, Menlo Park, CA, 1972, pp. 526–527.
- 268. T. Touru, S. Kurozumi, T. Tanaka, S. Miura, M. Kobayashi, and S. Ishimoto, Tetrahedron Lett., **1976**, 4087.
- 269. S. Bernasconi, M. Ferrari, P. Gariboldi, G. Jommi, M. Sisti, and R. Destro, J. Chem. Soc., Perkin Trans. 1, **1981**, 1994.
- 270. Y. Tamura, A. Wada, S. Okuyama, S. Fukumori, Y. Hayashi, N. Gohda, and Y. Kita, Chem. Pharm. Bull., **29**, 1312 (1981).
- 271. F. Naf and R. Decorzant, Helv. Chim. Acta, **57**, 1317 (1974).
- 272. S. Bernasconi, P. Gariboldi, G. Jommi, and M. Sisti, Tetrahedron Lett., **1980**, 2337.
- 273. R. G. Salomon and M. F. Salomon, J. Org. Chem., 40, 1488 (1975).
- 274. S. Bernasconi, P. Gariboldi, G. Jommi, M. Sisti, and P. Tavecchia, J. Org. Chem., **46**, 3719 (1981).
- 275. See Reference 245.
- 276. E. Ghera and Y. Ben-David, Tetrahedron Lett., 1979, 4603.
- 277. R. K. Boeckman, Jr., J. Am. Chem. Soc., **96**, 6179 (1974).
- 278. A. Leone-Bay and L. A. Paquette, J. Org. Chem., 47, 4173 (1982).
- 279. L. L. McCoy, J. Org. Chem., 25, 2078 (1960).
- 280. A. J. Dixon, R. J. K. Taylor, and R. F. Newton, J. Chem. Soc., Perkin Trans. 1, **1981**, 1407.
- 281. W. K. Bornack, S. S. Bhagwat, J. Ponton, and P. Helquist, J. Am. Chem. Soc., **103**, 4647 (1981).
- 282. R. E. Donaldson and P. L. Fuchs, J. Am. Chem. Soc., 103, 2108 (1981).
- 283. J.-B. Wiel and F. Rouessac, J. Chem. Soc., Chem. Commun., **1976**, 446.
- 284. T. Tanaka, S. Kurozumi, T. Toru, M. Kobayashi, M. Miura, and S. Ishimoto, Tetrahedron Lett., **1975**, 1535.
- 285. T. Tanaka, T. Toru, N. Okamura, H. Hazato, S. Sugiura, K. Manabe, S. Kurozumi, M. Suzuki, T. Kawagishi, and R. Noyori, Tetrahedron Lett., 1983, 4103.
- 286. T. Tanaka, A. Hazato, K. Bannai, N. Okamura, S. Sugiura, K. Manabe, T. Toru, S. Kurozumi, M. Suzuki, T. Kawagishi, and R. Noyori,

- Tetrahedron, 43, 813 (1987).
- 287. R. Noyori and M. Suzuki, Angew. Chem. Int. Ed. Engl., 23, 847 (1984).
- 288. M. Vandewalle and P. DeClercq, Tetrahedron, 41, 1767 (1985).
- 289. W. Oppolzer, Agnew. Chem. Int. Ed. Engl., 16, 10 (1977).
- 290. R. L. Funk and K. P. C. Vollhardt, J. Am. Chem. Soc., 102, 5253 (1980).
- 291. R. K. Boeckman, Jr., J. Am. Chem. Soc., 95, 6867 (1973).
- 292. T. Torkoroyama, K. Fujimori, T. Shimizu, Y. Yamagiwa, M. Monden, and H. Iio, J. Chem. Soc., Chem. Commun., **1983**, 1516.
- 293. G. Stork, C. S. Shiner, and J. D. Winkler, J. Am. Chem. Soc., **104**, 310 (1982).
- 294. R. A. Kretchmer and W. M. Schafer, J. Org. Chem., 38, 95 (1973).
- 295. M. Asaoka, K. Ishibashi, N. Yanagida, and H. Takei, Tetrahedron Lett., 1983, 5127.
- 296. Y. Tamuka, T. Kawasaki, N. Gohria, and Y. Kita, Tetrahedron Lett., 1979, 1129.
- 297. M. Igarashi, Y. Nakano, and M. Yatsu, Synthesis, 1984, 1075.
- 298. M. Westling and T. Livinghouse, *Am. Chem. Soc., Joint Great Lakes Central Regional Meeting*, Abstract 333, May 1984.
- 299. T. R. Kelly and H. Liu, J. Am. Chem. Soc., 107, 4998 (1985).
- 300. B. Tarnchompo, C. Thebtaranonth, and Y. Thebtaranonth, Synthesis, **1986**, 785.
- 301. K. Mori and T. Fujioka, Tetrahedron Lett., 1982, 5443.
- 302. M. Ihara, M. Toyota, K. Fukumoto, and T. Kametani, Tetrahedron Lett., **1984**, 3235.
- 303. J. L. Herrmann, M. H. Berger, and R. H. Schlessinger, J. Am. Chem. Soc., **95**, 7923 (1973).
- 304. R. E. Ireland, W. J. Thompson, G. H. Srouji, and R. Etter, J. Org. Chem., **46**, 4863 (1981).
- 305. N. N. Girota, R. A. Reamer, and N. L. Wendler, Tetrahedron Lett., **1984**, 5371.
- 306. K. Tanaka, F. Uchiyama, K. Sakamoto, and Y. Inubushi, J. Am. Chem. Soc., **104**, 4965 (1982).
- 307. S. Danishefsky, R. Zamboni, M. Kahn, and S. J. Etheredge, J. Am. Chem. Soc., **102**, 2097 (1980).
- 308. T. Kitahara, Y. Takagi, and M. Matsui, Agric. Biol. Chem., **43**, 2359 (1979).
- 309. M. R. Roberts and R. H. Schlessinger, J. Am. Chem. Soc., **103**, 724 (1981).
- 310. R. K. Boeckman, Jr., D. M. Blum, and S. D. Arthur, J. Am. Chem. Soc.,

- **101**, 5060 (1979).
- 311. L. A. Paquette and Y.-K. Han, J. Am. Chem. Soc., **103**, 1831 (1981).
- 312. E. Piers and E. H. Rudiger, J. Chem. Soc., Chem. Commun., **1979**, 166.
- 313. K. Narasaka, T. Sakakura, T. Uchimaru, and D. Guedin-Vuong, J. Am. Chem. Soc., **106**, 2954 (1984).
- 314. J. Garnero and D. Joulain, Bull. Soc. Chim. Fr. II, 1979, 15.
- 315. R. M. Cory, D. M. T. Chan, F. R. McLaren, M. H. Rasmussen, and R. M. Renneboog, Tetrahedron Lett., **1979**, 4133.
- 316. G. H. Posner and C. M. Lentz, Tetrahedron Lett., 1977, 3215.
- 317. J. E. McMurry and S. J. Isser, J. Am. Chem. Soc., 94, 7132 (1972).
- 318. W. Oppolzer, M. Guo, and K. Baettig, Helv. Chim. Acta, 66, 2140 (1983).
- 319. Y. Takahashi, H. Kosugi, and H. Uda, J. Chem. Soc., Chem. Commun., 1982, 496.
- 320. R. K. Dieter and J. W. Dieter, J. Chem. Soc., Chem. Commun., **1983**, 1378.
- 321. Y. Hayashi, T. Matsumoto, T. Hyono, N. Nishikawa, M. Uemura, M. Nishizawa, M. Togami, and T. Sakan, Tetrahedron Lett., **1979**, 3311.
- 322. C. R. Johnson and N. A. Meanwell, J. Am. Chem. Soc., **103**, 7667 (1981).
- 323. E. Piers and V. Karunaratne, J. Chem. Soc., Chem. Commun., **1984**, 959.
- 324. S. Danishefsky, K. Vaughan, R. C. Gadwood, and K. Tsuzuki, J. Am. Chem. Soc., **102**, 4262 (1980).
- 325. M. Kodpinid, T. Siwapinyoyos, and Y. Thebtaranonth, J. Am. Chem. Soc., **106**, 4862 (1984).
- 326. T. Tsunoda, M. Kodama, and S. Ito, Tetrahedron Lett., 1983, 83.
- 327. C. M. Lentz and G. H. Posner, Tetrahedron Lett., 1978, 3769.
- 328. T. Takahashi, H. Okumoto, and J. Tsuji, Tetrahedron Lett., 1984, 1925.
- 329. R. D. Clarke and C. H. Heathcock, Tetrahedron Lett., 1974, 1713.
- 330. D. F. Shriver and M. A. Drezdzon, *The Manipulation of Air-Sensitive Compounds*, 2nd Ed., Wiley-Interscience, New York, 1986.
- 331. G. B. Gill and D. A. Whiting, Aldrichimica Acta, 19, 31 (1986).
- 332. E. Juaristi, A. Martiniez-Richa, A. Garcia-Rivera, and J. S. Cruz-Sanchez, J. Org. Chem., **48**, 2603 (1983).
- 333. M. R. Winkle, J. M. Lausinger, and R. C. Ronald, J. Chem. Soc., Chem. Commun., 1980, 87.
- 334. M. F. Lipton, C. M. Sorensen, A. C. Sadler, and R. H. Shapiro, J. Organomet. Chem., **186**, 155 (1980).
- 335. S. C. Watson and J. F. Eastham, J. Organomet. Chem., 9, 165 (1967).

- 336. W. G. Kofron and L. M. Baclawski, J. Org. Chem., 41, 1879 (1976).
- 337. R. Davis and K. G. Untch, J. Org. Chem., 44, 3755 (1979).
- 338. M. F. Semmelhack, A. Yamashita, J. C. Tomesch, and K. Hirotsu, J. Am. Chem. Soc., **100**, 5565 (1978).
- 339. J. W. Patterson and J. H. Fried, J. Org. Chem., **39**, 2506 (1974).
- 340. H. O. House, L. J. Czuba, M. Gall, and H. D. Olmstead, J. Org. Chem., **34**, 2324 (1969).
- 341. H. O. House and J. M. Wilkins, J. Org. Chem., 43, 2443 (1978).
- 342. D. Seebach, R. Amstutz, and J. D. Dunitz, Helv. Chim. Acta, **64**, 2622 (1981).
- 343. T. Mukhopadhyay and D. Seebach, Helv. Chim. Acta, 65, 385 (1982).
- 344. A. J. Dixon, R. J. K. Taylor, R. F. Newton, A. H. Wadsworth, and G. Klinkert, J. Chem. Soc., Perkin Trans. 1, **1982**, 1923.
- 345. W. Oppolzer, K. Baettig, and M. Petrilka, Helv. Chim. Acta, **61**, 1945 (1978).
- 345a B. H. Lipshutz, R. S. Wilhelm, and J. A. Kozlowski, Tetrahedron Lett., . 1982, 3755.
- 346. J. Klein, R. Levene, and E. Dunkelblum, Tetrahedron Lett., 1972, 4031.
- 347. H. J. Reich, J. M. Renga, and I. L. Reich, J. Org. Chem., **39**, 2133 (1974).
- 348. H. J. Reich, J. M. Renga, and I. L. Reich, J. Am. Chem. Soc., **97**, 5434 (1975).
- 349. W. Oppolzer, R. L. Snowden, and P. H. Briner, Helv. Chim. Acta, **64**, 2022 (1981).
- 350. F. Naf, R. Decorzant, and W. Thommen, Helv. Chim. Acta, **58**, 1808 (1975).
- 351. Y.-K. Han and L. A. Paquette, J. Org. Chem., **44**, 3731 (1979).
- 352. S. Danishefsky, S. Chackalamannil, M. Silvestri, and J. Springer, J. Org. Chem., 48, 3615 (1983).
- 353. M. P. Cooke, Jr., Tetrahedron Lett., **1979**, 2199.
- 354. L. S. Liebeskind, M. E. Welker, and R. W. Fengl, J. Am. Chem. Soc., **108**, 6328 (1986).
- 355. S. G. Davies and J. C. Walker, J. Chem. Soc., Chem. Commun., **1986**, 495.
- 356. A. J. Dixon, R. J. K. Taylor, R. F. Newton, and A. Wadsworth, Tetrahedron Lett., **1982**, 327.
- 357. T. Fujisawa, A. Noda, T. Kawara, and T. Sato, Chem. Lett., **1981**, 1159.
- 358. A. E. Greene and P. Crabbe, Tetrahedron Lett., 1976, 4867.
- 359. Y. Ito, M. Nakatsuka, and T. Saegusa, J. Am. Chem. Soc., 103, 476

- (1981).
- 360. K. C. Nicolaou and W. E. Barnette, J. Chem. Soc., Chem. Commun., **1979**, 1119.
- 361. T. Takahashi, Y. Naito, and J. Tsuji, J. Am. Chem. Soc., **103**, 5261 (1981).
- 362. F. E. Ziegler and J.-M. Fang, J. Org. Chem., 46, 825 (1981).
- 363. F. E. Ziegler and J. J. Mencel, Tetrahedron Lett., 1983, 1859.
- 364. N. L. Holy and Y. F. Wang, J. Am. Chem. Soc., 99, 944 (1977).
- 365. R. A. Kretchmer, E. D. Mihelich, and J. J. Waldron, J. Org. Chem., **37**, 4483 (1972).
- 366. A. Rosan and M. Rosenblum, J. Org. Chem., 40, 3621 (1975).
- 367. M. Suzuki, T. Suzuki, T. Kawagishi, and R. Noyori, Tetrahedron Lett., 1980, 1247.
- 368. H. Hagiwara, T. Kodama, H. Kosugi, and H. Uda, J. Chem. Soc., Chem. Commun., 1976, 413.
- 369. H. Hagiwara, H. Uda, and T. Kodama, J. Chem. Soc., Perkin Trans. 1, **1980**, 963.
- 370. E. Piers and C. K. Lau, Synth. Commun., 7, 495 (1977).
- 371. E. Piers, C. K. Lau, and I. Nagakura, Can. J. Chem., 61, 288 (1983).
- 372. D. Spitzner, A. Engler, T. Liese, G. Splettosser, and A. deMeijere, Angew. Chem. Int. Ed. Engl., **10**, 791 (1982).
- 373. D. J. Ager and I. Fleming, J. Chem. Soc., Chem. Commun., 1978, 177.
- 374. D. Spitzner and H. Swoboda, Tetrahedron Lett., 1986, 1281.
- 375. W. P. Jackson and S. V. Ley, J. Chem. Soc., Chem. Commun., **1979**, 732.
- 376. A. B. Smith, III, B. A. Wexler, and J. S. Slade, Tetrahedron Lett., **1980**, 3237.
- 377. D. L. J. Clive, C. G. Russell, and S. C. Suri, J. Org. Chem., **47**, 1632 (1982).
- 378. J. W. Ellis, J. Chem. Soc. D, Chem. Commun., 1970, 406.
- 379. R. M. Cory and R. M. Renneboog, J. Chem. Soc., Chem. Commun., **1980**, 1081.
- 380. S. C. Welch and S. Chayabunjonglerd, J. Am. Chem. Soc., **101**, 6768 (1979).
- 381. S. C. Welch, S. Chayabunjonglerd, and A. S. P. Rao, J. Org. Chem., **45**, 4086 (1980).
- 382. A. J. Pearson, Tetrahedron Lett., 1980, 3929.
- 383. D. Liotta, C. S. Barnum, and M. Saindane, J. Org. Chem., **46**, 4301 (1981).

- 384. G. Zima, C. Barnum, and D. Liotta, J. Org. Chem., 45, 2736 (1980).
- 385. M. Suzuki, T. Kawagishi, and R. Noyori, Tetrahedron Lett., 1982, 5563.
- 386. G. H. Posner, M. Hulce, J. P. Mallamo, S. A. Drexler, and J. Clardy, J. Org. Chem., **46**, 5244 (1981).
- 387. G. H. Posner, J. P. Mallamo, and K. Miura, J. Am. Chem. Soc., **103**, 2886 (1981).
- 388. S. V. Ley, N. S. Simpkins, and A. J. Whittle, J. Chem. Soc., Chem. Commun., **1981**, 1001.
- 389. M. F. Semmelhack, L. Keller, T. Sato, and E. Spiess, J. Org. Chem., **47**, 4382 (1982).
- 390. G. Stork and M. Isobe, J. Am. Chem. Soc., 97, 6260 (1975).
- 391. N.-Y. Wang, C.-T. Hsu, and C. J. Sih, J. Am. Chem. Soc., **103**, 6538 (1981).
- 392. L. L. McCoy, J. Org. Chem., 29, 240 (1964).
- 393. M. I. Quesada, R. Schlessinger, and W. H. Parsons, J. Org. Chem., **43**, 3968 (1978).
- 394. M. T. Flavin and M. C. Lu, Tetrahedron Lett., 1983, 2335.
- 395. F. Naf and R. Decorzant, Helv. Chim. Acta, 54, 1939 (1971).
- 396. F.-A. Kunng, M.-M. Gu, S. Chao, Y. Chen, and P. S. Mariano, J. Org. Chem., **48**, 4262 (1983).
- 397. R. D. Little and J. R. Dawson, J. Am. Chem. Soc., 100, 4607 (1978).
- 398. R. S. Ratney and J. English, J. Org. Chem., **25**, 2213 (1960).
- 399. M. P. Cooke, Jr., J. Org. Chem., 49, 1144 (1984).
- 400. I. Fleming and A. K. Sarkar, J. Chem. Soc., Chem. Commun., **1986**, 1199.
- 401. M. Ihara, M. Toyota, M. Abe, Y. Ishida, K. Fukumoto, and T. Kametani, J. Chem. Soc., Perkin Trans. 1, **1986**, 1543.
- 402. M. Ihara, M. Toyota, K. Fukumoto, and T. Kametani, Tetrahedron Lett., **1984**, 2167.
- 403. M. Watanabe, K. Shirai, and T. Kumamoto, Bull. Chem. Soc. Jpn., **52**, 3318 (1979).
- 404. J. A. Thomas and C. H. Heathcock, Tetrahedron Lett., 1980, 3235.
- 405. E. Piers, J. Banville, C. K. Lau, and I. Nagakura, Can. J. Chem., **60**, 2965 (1982).
- 406. E. Piers, C. K. Lau, and I. Nagakura, Tetrahedron Lett., 1976, 3233.
- 407. R. L. Funk and K. P. C. Vollhardt, J. Am. Chem. Soc., **99**, 5483 (1977).
- 408. R. L. Funk and K. P. C. Vollhardt, J. Am. Chem. Soc., **101**, 215 (1979).
- 409. W. Oppolzer, M. Petrilka, and K. Baettig, Helv. Chim. Acta, 1977, 2964.
- 410. G. Pattenden and S. J. Teague, Tetrahedron Lett., 1982, 5471.

- 411. R. E. Abbott and T. A. Spencer, J. Org. Chem., 45, 5398 (1980).
- 412. Y. Kita, J. Segawa, J. Haruta, T. Fuji, and Y. Tamura, Tetrahedron Lett., **1980**, 3779.
- 413. J.-P. Lepoittevin and C. Bemezra, Tetrahedron Lett., 1984, 2505.
- 414. E. Piers, J. Nagakura, and H. E. Morton, J. Org. Chem., **43**, 3630 (1978).
- 415. E. Piers and E. H. Ruediger, Can. J. Chem., 61, 1239 (1983).
- 416. L. A. Paquette and A. Leone-Bay, J. Am. Chem. Soc., 105, 7352 (1983).
- 417. S. Danishefsky, R. Zamboni, M. Kahn, and S. J. Etheredge, J. Am. Chem. Soc., **103**, 3460 (1981).
- 418. S. Lane and R. J. K. Taylor, Tetrahedron Lett., 1985, 2821.
- 419. S. Danishefsky, M. Kahn, and M. Silvestri, Tetrahedron Lett., 1982, 703.
- 420. S. Danishefsky, M. Kahn, and M. Silvestri, Tetrahedron Lett., **1982**, 1419.
- 421. H. E. Zimmerman, X. Jian-hua, R. K. King, and C. E. Caufield, J. Am. Chem. Soc., **107**, 7724 (1985).
- 422. G. H. Posner, T. P. Kogan, S. R. Haines, and L. L. Frye, Tetrahedron Lett., **1984**, 2627.
- 423. M. Isobe, M. Kitamura, and T. Gota, Chem. Lett., 1980, 331.
- 424. J. P. Ponton, P. Helquist, P. C. Conrad, and P. L. Fuchs, J. Org. Chem., **46**, 118 (1981).
- 425. P. R. Hamann, J. E. Toth, and P. L. Fuchs, J. Org. Chem., **49**, 3865 (1984).

The Nef Reaction

Harold W. Pinnick, Bucknell University, Lewisburg, Pennsylvania

1. Introduction

The Nef reaction is usually defined as the conversion of a primary or secondary nitroalkane into the corresponding carbonyl compound. (1) This reaction was reported by the Swiss chemist J. U. Nef in 1894 with two examples. (2)

$$CH_{3}CHNO_{2}^{-}Na^{+} \xrightarrow{H^{+}} CH_{3}CHO$$

$$(70\%)$$

$$(CH_{3})_{2}CNO_{2}^{-}Na^{+} \xrightarrow{H^{+}} (CH_{3})_{2}C=O$$

$$(67\%)$$

Hydrochloric and sulfuric acid give the same result. The conversion of a nitro group to a carbonyl group has become an important synthetic tool (3) because of the ease of preparation of substituted nitro compounds by condensation of nitroalkanes with aldehydes (the Henry reaction), (4) conjugate addition of nitroalkanes to electrophilic alkenes, 3c,5 or carbon alkylation of the dianion of primary nitroparaffins. (6) The Nef reaction is one of the better examples of "umpolung" reactivity in which the original nitro compound anion functions as an acyl anion equivalent. (7)

This chapter discusses the Nef reaction and modifications of the original process that extend the variety of compounds which are useful as substrates. Each modification is considered according to general mechanistic type and is organized in a "reagent" approach. The Tabular Survey lists all known examples of both the Nef reaction and these modifications so that specific comparison of methods can be made.

2. Mechanism

The mechanism of the Nef reaction has been studied extensively. (1, 8-18) The initial conversion of the nitro compound into the salt ("nitronate") is accomplished with base; however, the key step is acidification of this intermediate to give the carbonyl compound and inorganic byproducts (Eq. 1). The latter

$$RR^{1}CHNO_{2} \xrightarrow{base} RR^{1}C=NO_{2}^{-} \xrightarrow{H^{+}} RR^{1}C=O + 1/2 N_{2}O + 1/2 H_{2}O (1)$$

reaction is pH-dependent, and side reactions can occur (see Table A). (16) Weakly acidic conditions favor regeneration of the nitro compound, whereas high acidity gives the Nef reaction. (17) Oximes and pseudonitroles (α -nitroso nitro compounds) are observed at intermediate levels of acidity (pH 1–5).

Table A. pH Dependence of the Product Distribution in the Acidification of the Salt of 2-Nitropropane at 21° (16)

Yield (%)							
pH (C	(CH ₃)₂CHNO₂	CH ₃) ₂ C =	(CH ₃) ₂ C =	(CH ₃) ₂ C(NO)NO ₂			
5.4	(100)	(0)	(0)	(0)			
5.0	(85)	(8)	(8)	(0)			
4.3	(44)	(20)	(19)	(15)			
3.1	(10)	(30)	(30)	(29)			
2.0	(0)	(39)	(32)	(29)			
1.5	(0)	(49)	(28)	(22)			
1.2	(0)	(80)	(12)	(7)			
0.5	(0)	(100)	(0)	(0)			

Several mechanisms have been proposed for this reaction. (8, 11, 15, 18) Kinetic analysis, together with the fact that additional water in an alcohol–water

solvent slows the reaction, (18) have led to the conclusion that two mechanisms can operate—the difference between the two mechanisms being the timing of water loss. The basic steps are sequential protonation of the nitronate salt on each oxygen followed by attack of water and decomposition of the resulting intermediate (Scheme 1). Another report contends that the nitronic acid is not an intermediate from the protonation of the nitronate. (19) Nevertheless, it is clear that the reaction is sensitive to both pH and concentration of water. As a result, adding acid to the nitronate favors nitro compound regeneration in competition with the Nef reaction, whereas addition of the nitronate to strong acid favors the Nef reaction. (20, 21) The mechanism clearly shows that additional side reactions can be expected in some systems because of nitrous oxide formation.

Scheme 1.

$$RR^{1}C=NO_{2}^{-} \xrightarrow{H^{+}} RR^{1}C=N \xrightarrow{H^{+}} RR^{1}C=N \xrightarrow{H^{+}} RR^{1}C=N \xrightarrow{H^{+}} OH$$

$$OH \qquad OH \qquad OH$$

$$H_{2}O, -H^{+} RR^{1}CN(OH)_{2} \xrightarrow{-H_{2}O} RR^{1}CN=O \xrightarrow{H^{+}} RR^{1}CN=OH$$

$$= RR^{1}C=OH + HNO \xrightarrow{-H^{+}} RR^{1}C=O$$

$$2 HNO \implies H_{2}O + N_{2}O$$

3. Scope and Limitations

3.1. Nitro Compounds and Nitronates

Nitro compounds are readily available (1, 22-29) and serve as ideal synthetic intermediates. The most common method of preparation is by nitrite ion displacement of a leaving group. (22) Most primary and secondary halides react with sodium nitrite in aprotic media such as dimethyl sulfoxide (DMSO) or

$$RX + NO_2 \rightarrow RNO_2 + X$$

dimethylformamide (DMF) to give useful yields of the nitro compounds. In another approach, stabilized carbanions can be nitrated by treatment with a nitrate ester (RONO₂). (22, 24) In addition, enol acetates are nitrated by acetyl nitrate. (24, 25) Thus α -nitroketones, α -nitroesters, and β -nitrosulfones are easily prepared. A third method is the oxidation of primary amines with potassium permanganate, m-chloroperoxybenzoic acid (MCPBA), (22) ozone, (23) or the exotic dimethyldioxirane. (26) These oxidative methods are useful for preparing virtually any nitro compound—even tertiary derivatives that are not available by the nitrite displacement reaction, an S_N2 process. Oximes also can be oxidized with peroxyacids. (27, 28) Alternatively, oximes can be brominated to give α -bromo nitroso compounds, which can be oxidized with nitric acid/3. This is a valuable route for preparing secondary nitroparaffins by reductive removal of the bromine. (29, 30) These latter compounds also can be obtained in good yields by alkylation of the dianions of primary nitro compounds. (6) Another recent method uses hypochlorous acid to chlorinate oximes in 71-93% yields, and the products are then reduced with magnesium, zinc, or hydrogen/palladium to give 77–95% yields of secondary nitro compounds. (29a)

Many reactions of nitro compounds reflect the equilibrium with nitronic acids 1 (also called *aci*-nitro or isonitro compounds). (31) These nitronic acids

$$RR^1CHNO_2$$
 \longrightarrow $RR^1C=N$ $\stackrel{O}{+}$ $\stackrel{O}{OH}$

are much like enol forms of ketones—they are much more acidic than nitro compounds (2–5 pK_a units), (32) and the equilibrium lies very much on the side of the nitro isomer. Typical values for the equilibrium constant K_{eq} are 10^{-5} to 10^{-7} . 3a

Nitronate salts are formed by treating nitro compounds with any aqueous alkali. Water-miscible cosolvents such as dioxane, tetrahydrofuran (THF), or alcohols can also be used, particularly when the nitro compound has limited solubility in water. For example, treatment of nitro compounds with sodium methoxide in methanol gives acetals after addition of acid from even large primary nitroparaffins. (33) Stronger bases are used in aprotic media. As an illustration, nitronates from primary nitro compounds can be deprotonated by using *n*-butyllithium as the base in an aprotic solvent like tetrahydrofuran. (6)

A wide range of substituted nitro compounds undergoes the Nef reaction. These include γ -nitroketones, (34) γ -nitroalcohols, (35) γ -nitroesters, (36, 37) and γ -nitro nitriles. (38, 39) All of these are available by Michael reactions. α -Keto

$$R^{1}CH_{2}NO_{2} + R^{2}CH = CHY$$
 $R^{1}CH(NO_{2})CHR^{2}CH_{2}Y$
 $R^{3}CHNO_{2}^{-} + R^{2}CH = CHCOR^{1} \xrightarrow{1. addition} R^{3}CH(NO_{2})CHR^{2}CH_{2}CHOHR^{1}$
 $R^{1}CH_{2}Y + R^{2}CH = C(NO_{2})R^{3}$
 $R^{1}CH(Y)CHR^{2}CH(NO_{2})R^{3}$

aldehydes are available from α -nitroketones. (40) α -Hydroxy aldehydes and ketones are isolated from the condensation of nitro compounds with aldehydes followed by a Nef reaction. Many examples of this chemistry are found in the carbohydrate field as early as 1944. (41) Aldoses are often used in condensation reactions with nitroparaffins to give highly functionalized nitro compounds which undergo the Nef reaction. An α -acetamidoaldose can also be prepared in this way. (42) Other polyfunctional compounds that undergo the Nef reaction include the azido- β -lactam 2. (43)

The Nef reaction has been used as the key step in a 1,2 transposition of carbonyl groups (p. 660). (44) Thus a ketone is nitrated at the alpha position with a nitrate ester, (24, 25) and the carbonyl group is reduced with sodium borohydride. Loss of water followed by conjugate reduction with sodium borohydride gives a nitro compound which is then submitted to the Nef

reaction. Unfortunately, since reduction of some nitroolefins is incomplete, a reductive Nef process using zinc is necessary in order to obtain clean results.

Some aromatic nitro compounds undergo addition of nucleophiles to give nitronate anions which can be protonated to give either the nitro compound

$$R^{1}COCH_{2}R \longrightarrow R^{1}COCHRNO_{2} \xrightarrow{NaBH_{4}}$$

$$\left[\begin{array}{cccc} R^{1}CHOHCHRNO_{2} \longrightarrow & R^{1}CH=CRNO_{2} \end{array}\right] \longrightarrow R^{1}CH_{2}CHRNO_{2} \longrightarrow & R^{1}CH_{2}COR$$

or the Nef product. (45-48) For example, addition of a Grignard reagent to 9-nitroanthracene followed by workup with buffered acetic acid gives the *cis* adduct. (45) Similar results are obtained with nitronaphthalenes. (46) The Nef process is observed in the reaction of *o*-nitrobenzonitrile with sodium cyanide

where 2,6-dicyanophenol is obtained in 60-75% yield. (47, 48)

3.2. Side Reactions That Complicate the Nef Reaction

Nitronates are reactive toward electrophiles at several sites because of delocalization of the negative charge, and this often leads to complications. Addition of a proton to the alpha carbon atom regenerates the nitro compound, (1, 49) whereas the desired Nef process requires protonation on one of the oxygen atoms to give a nitronic acid. More stable nitronates tend to give the

nitro compounds upon acidification. (20, 49) This regeneration of nitroparaffins is the only reaction if mild acids capable of destroying nitrous acid (like hydroxylamine hydrochloride or urea and acetic acid) are used. (20)

Another problem arises as a result of nitrite ion behaving as a good leaving group. Many nitro compounds eliminate upon treatment with base. This is a problem particularly when the nitro group is beta to an acidifying functionality like a carbonyl group. While this is a side reaction for the Nef reaction, it can have synthetic utility. 3d

As mentioned above, acid itself can cause reactions other than the Nef reaction although the product may be identical. There is one report of the direct conversion of a nitro compound into a ketone by treatment with acid. (50) Thus 2-nitrooctane gives 2-octanone after prolonged reflux with 1 N hydrochloric acid in a heterogeneous system. The conversion is only 35% complete after nearly 2 weeks of heating. The action of strong acid on nitro compounds was discovered by Meyer 11 years before Nef recorded his initial observations. (51) In the Meyer reaction, primary nitro compounds are converted into carboxylic acids by treatment with hydrochloric acid or sulfuric acid. (51-59) This

process involves hydroxamic acids **3** as intermediates, (19, 59-61) which are usually

$$RCH_2NO_2$$
 $\xrightarrow{H_3O^+}$
 $RCNHOH$
 \longrightarrow
 $RC=NOH$
 3

isolated simply by avoiding heat. (15, 60-65) The mechanism of the Meyer reaction is shown in Eq. 2. (15, 61, 63-65) A thorough study of the kinetics indicates that the reaction proceeds at a maximum rate at a pH less than that required to protonate all of the neutral nitronic acid. (64, 65) This suggests that a competitive reaction takes place involving *O*-protonation of the nitronic acid, followed by loss of water and a proton to give the nitrile oxide. (65) The nitrile oxide has been trapped by 1,3-dipolar cycloaddition to alkenes and alkynes. (66)

$$RCH_{2}NO_{2} \xrightarrow{H^{+}} RCH = N + O \xrightarrow{-H_{2}O} RC = N - O \xrightarrow{H_{2}O} (2)$$

$$3 \xrightarrow{H_{2}O} RCO_{2}H + NH_{2}OH$$

Several reports indicate that nitronate salts derived from primary nitro compounds give carboxylic acids upon acidification. (62, 67, 68) Although these seem to be abnormal Nef reactions, undoubtedly the Meyer reaction is the true pathway because of the strong acid or vigorous conditions employed. Direct acidification of 1-phenylnitroethane and 1-phenylnitropropane in the presence of potassium nitrite gives acetophenone and propiophenone, respectively. (69)

Nitroalkanes sometimes undergo self-condensation upon exposure to base. As might be expected, this process is a serious problem with less-hindered nitro compounds such as nitromethane, which readily forms methazonate ion ($^{-}O_2N = CHCH = NO^{-}$) upon treatment with hydroxide ion. (70, 71) In addition, small primary nitroparaffins (nitroethane, 1-nitropropane, and 1-nitrobutane) undergo trimerization in the presence of even weak bases such as triethylamine or potassium carbonate to give isoxazoles. (72, 73) This conversion proceeds via the aldehyde, which condenses with the nitroalkane. (72)

3
$$RCH_2NO_2$$
 K_2CO_3 R R R

Another side reaction that complicates the Nef reaction is the formation of pseudonitroles 4 from secondary nitro compounds and nitrolic acids 5 when primary nitroalkanes are used. (74-76) These products are favored by slow

$$RR^{1}CHNO_{2} \xrightarrow{1. NaOH} RR^{1}C(NO)NO_{2} \xrightarrow{R^{1}=H} RC(NO_{2})=NOH$$

addition of the nitronate to acid. (75) Since nitrous acid is the cause of the nitrosation, addition of a good nitrous acid scavenger such as urea prevents

this problem. (1, 20)

Certain polyfunctional molecules can lead to undesired products because of interaction of neighboring groups or loss of some functionality under the reaction conditions. Attempted Nef reactions on the dinitro compound 6 (77) or nitro acid 7 (78) lead mainly to heterocyclic products, presumably via the

corresponding nitronic acids. The nitro lactone 8 undergoes ring opening as well as the Nef reaction and gives an unexpected acetal. (79) Loss of nitrite ion

by intramolecular displacement occurs faster than acidification and complicates the reaction of α -nitrotoluene with α -nitrostilbene. (80) The strong acid

$$C_6H_5CH_2NO_2 + C_6H_5C(NO_2)=CHC_6H_5$$

NaOCH₃
heat
 C_6H_5
 C_6H_5
 C_6H_5
(82%)

used in the Nef reaction causes dehydration of compound 9 instead of the

Nef reaction, (81) and leads to partial dehydration as a byproduct from nitro compound 10. (82)

2-Nitro-1-butanol gives mixtures of the Nef product (1-hydroxy-2-butanone) and 2-nitro-1-butene as well as some of the oxime of the Nef product. (83) These competing reactions are pH-dependent. The Nef process is favored at high acidity (pH 1.1 is best). (83)

 γ -Nitroketones derived from the addition of β -keto esters to nitroolefins undergo intramolecular reactions in the presence of alcoholic sodium or potassium hydroxide and attempted Nef reaction with acid to give furans 11, 12, or 13. (84-87b) In contrast, the presence of a neighboring carboxylate

group causes an accelerated Nef reaction with 4-nitrovaleric acid, possibly by intramolecular protonation. (88)

Rearrangements also occur under Nef reaction conditions if the substrates are prone to form carbocations, for example, those containing the bicyclo[2.2.1]heptane skeleton. An attempt to carry out the Nef reaction with 5-nitro-6-phenylbicyclo[2.2.1]hept-2-ene was not successful. (89) The structure of the rearrangement product was subsequently shown to be *N*-hydroxylactam 14. (90) A similar reaction occurs when the phenyl group is replaced with a

$$C_6H_5$$
 1. KOH, CH₃OH H C_6H_5 O H OH OH 14 (40%)

methyl group. (90) The rearrangement products from very similar compounds (91-93) such as **15** (91) are of a different structural type. Both of these products arise

by ring opening of the *aci*-nitro compound to give a nitrile oxide and then a hydroxamic acid, which can form a ring via attack by either oxygen or nitrogen. (90, 91)

$$R$$
 $CH(R)C = N - 0$
 $CH(R)CONHOH$

 α -Nitrocamphor as well as the corresponding nitronate give an \emph{N} -hydroxyimide upon exposure to hydrochloric acid by a similar mechanism. (94, 95)

A similar reaction occurs with the nitrosteroid 16. (96) Many cyclic α -nitro

ketones undergo this type of rearrangement under acidic conditions; however, exposure to nucleophiles like water or alcohols under either acidic or basic conditions gives the ring-opened nitro acid or ester by way of a retro aldol reaction. (24, 97, 98)

An interesting modification is the intramolecular variant of this reaction, which can be used to prepare macrocyclic nitro compounds. (99-103) For example, a 10-membered ring nitrolactone is produced by reacting the substituted nitrocyclohexanone 17 with a catalytic amount of sodium hydride in hot 1,2-dimethoxyethane. (99) Such cyclic nitro compounds can then be subjected to the Nef reaction to yield ketolactones or keto diacids.

The salt of α -nitro ketone 18 dimerizes when exposed to acid. (104, 105)

$$18$$

$$\frac{H_3O^+}{heat}$$

Some Nef products are prone to undergo epimerization. A nitronic ester is obtained by cycloaddition of 1-nitrocyclohexene to cyclohexene and is sensitive to loss of optical activity under the usual Nef conditions with sulfuric acid and water. (106) When the reaction is carried out in the presence of ethylene glycol at 0°, no epimerization is observed in the isolated hydroxyketal. (106)

Some nitro compounds fail to react under Nef conditions. For example, the nitrodeoxyinositol mixture 19 is recovered unchanged from an attempted Nef reaction using barium hydroxide followed by sulfuric acid. (107, 108) A variety

of fluorinated nitro compounds also fail to give Nef reaction products, although no experimental details are available. (109) It is possible that these reactions fail because the nitronate anions are not formed completely. Use of a stronger base or modified Nef conditions might be helpful. Other systems fail to undergo the Nef reaction because the corresponding nitronate salts are highly stabilized and tend to protonate on carbon rather than oxygen. (20, 49) Examples are the nitro compounds 20 (110, 111) and the heterocycle 21. (112) The benzylic nitro compound 22 (113) also fails to give useful amounts of Nef product, possibly for the same reason. Another system that does not undergo the Nef reaction is nitro compound 23, (114) in which only starting material is recovered

HO
$$\begin{array}{c} & & \text{NC} \\ & & \text{CN} \\ & & \text{CH}_2\text{NO}_2 \\ & & \text{CH}_2\text{NO}_2 \\ & & \text{CH}_2\text{CH} = \text{CH}_2 \\ & & \text{OCH}_3 \\ & & \text{CH}_2\text{CH} = \text{CH}_2 \\ & & \text{OCH}_3 \\ & & \text{CH}_2\text{CH} = \text{CH}_2 \\ & & \text{OCH}_3 \\ & & \text{CH}_2\text{CH} = \text{CH}_2 \\ & & \text{OCH}_3 \\ & & \text{CH}_2\text{CH} = \text{CH}_2 \\ & & \text{OCH}_3 \\ & & \text{CH}_2\text{CH} = \text{CH}_2 \\ & & \text{OCH}_3 \\ & & \text{CH}_2\text{CH} = \text{CH}_2 \\ & & \text{OCH}_3 \\ & & \text{CH}_2\text{CH} = \text{CH}_2 \\ & & \text{OCH}_3 \\ & & \text{CH}_2\text{CH} = \text{CH}_2 \\ & & \text{OCH}_3 \\ & & \text{CH}_2\text{CH} = \text{CH}_2 \\ & & \text{CH}_2\text{CH}_2\text{CH} = \text{CH}_2 \\ & & \text{CH}_2\text{CH}_2\text{CH}_2 \\ & & \text{CH}_2\text{CH}_2 \\$$

after exposure to sodium ethoxide at -15° followed by sulfuric acid. The use

R=H, NO₂

of bromine instead of sulfuric acid gives the α -bromonitro compound, showing that the nitronate was formed. This result seems to rule out elimination to the nitroolefin, although acidification of the nitroolefin could give 23 by conjugate addition of an oximino nitroalkene intermediate, and bromination of the nitroolefin could yield the α -bromo compound via a bromonium ion.

3.3. Modified Nef Reactions

Considerable effort has been directed toward the development of modified Nef reaction conditions for several reasons. First, some compounds are prone to undergo side reactions or fail to react as discussed in the preceding section. Second, the use of base followed by acid, as in the traditional Nef reaction, is incompatible with many polyfunctional molecules. Thus, the scope of the Nef reaction has been widened considerably by the use of modified methods to accomplish this conversion. Many of the modified approaches utilize oxidizing agents or reducing agents. Each method is discussed, and specific examples are provided in the tables.

3.3.1.1. Oxidizing Agents

Numerous reagents accomplish the Nef conversion by way of an oxidation. These are discussed individually roughly in the order of their discovery, but with some consideration for synthetic utility as well.

3.3.1.2.1. Potassium Permanganate

One of the modified Nef reactions, discovered in the early 1900s, (115-123) uses potassium permanganate to cleave the nitronate salts of various compounds. The yields range from 12–100% when applied to simple nitro compounds or unsaturated bicyclic nitro compounds like 24.

It is significant that the nitronate oxidation is faster than the cleavage of alkene double bonds. This reaction was reinvestigated in 1962 and it was found to proceed with higher yields than the "normal" Nef reaction. (124) In addition, aldehydes can be isolated when excess potassium permanganate is avoided. (124-131)

Carboxylic acids are obtained from primary nitroparaffins when excess reagent is used (greater than 0.67 equivalent). (124, 129-132) The reaction usually is carried out in a medium buffered with magnesium sulfate or a borate salt. Analysis of the kinetics suggests that the key step is attack of permanganate ion on the C = N bond of the nitronate salt. (133-135)

The original procedure involves the use of potassium hydroxide for the formation of the nitronate salts, but this sometimes leads to erratic results. This problem can be overcome by using sodium hydride in *tert*-butyl alcohol and

pentane. (126, 127) Under these conditions, addition of aqueous potassium permanganate leads to 59–96% isolated yields of aldehydes such as **25**. (126, 127)

$$t-C_4H_9O_2CC(CH_3)_2C(CH_3)_2CH_2NO_2$$

$$\frac{NaOC_4H_9-t}{KMnO_4} - t-C_4H_9O_2CC(CH_3)_2C(CH_3)_2CHO$$
0°
25 (91%)

Lithium methoxide followed by potassium permanganate gives a 95% yield of the ketolactone **26**. (99) An analogous ketolactam can be prepared by the same general procedure. (136)

Cetyltrimethylammonium permanganate in methylene chloride converts numerous nitro compounds into aldehydes and ketones at room temperature in good yields. (136a) For example, camphor is isolated in 65% yield and heptanal in 71% yield.

See also the section on silica-gel supported potassium permanganate reactions for further examples (p. 680).

3.3.1.2.2. Oxygen and Ozone

The conversion of nitro compound 27 into the corresponding

ketone in unspecified yield by treatment with potassium ethoxide and then exposure to air was reported 50 years ago. (137) This type of reaction was studied 20 years later and found to represent an autoxidation. (138) Thus 2-nitropropane is converted into acetone and nitrite ion by exposure to sodium

hydroxide and air. More recently, the 8-azaflavin 28 has been found to catalyze

this reaction. (139) The oxidation of nitronates with molecular oxygen appears not to have much synthetic utility unless inexpensive catalysts can be found. Ferric chloride accelerates the formation of acetone, (138) but the scope and possible synthetic applications have not been studied.

Singlet oxygen also converts nitronate salts into aldehydes and ketones. (140) Thus irradiation of basic solutions of four different nitro compounds in the presence of oxygen and Rose Bengal gives the corresponding carbonyl compounds in 49–67% yield. This group includes nitroalkenes such as compound 29.

Ozone also accomplishes this Nef-like reaction. Nitro compounds can be deprotonated with sodium methoxide in methanol and then exposed to ozone at -78° . Workup with dimethyl sulfide gives the carbonyl compounds in 65–88% yields. (141, 142) Aldehydes may also be obtained without difficulty. Functional groups that are unaffected include ketone carbonyl, ester, and ketal. (140) Thioesters can be obtained by ozonolysis of a nitronate generated by a conjugate addition. 143,143a

$$O = (CH_2)_2CH = C(NO_2)SC_6H_5$$

$$O = (n-C_4H_9)_4N^4F$$

$$O = (SC_6H_5) = NO_2$$

3.3.1.2.3. *m*-Chloroperoxybenzoic Acid

Trialkylsilyl nitronates are formed from secondary nitro compounds, base (e.g., 1,8-diazabicyclo[5.4.0]undec-2-ene, DBU), and chlorosilanes. These nitronate esters react with m-chloroperoxybenzoic acid (MCPBA) to give ketones in 70–99% yields. (143b) β -Substituted nitro compound substrates can be prepared from the corresponding nitro-olefins. (143b)

$$C_6H_5CH_2OCH(CH_3)CH(CH_3)NO_2$$

$$\frac{1. DBU, (CH_3)_3SiC1}{2. MCPBA}$$
 $C_6H_5CH_2OCH(CH_3)COCH_3$
(91%)

3.3.1.2.4. *tert*-Butyl Hydroperoxide/Oxovanadium(IV) Bisacetylacetonate or Molybdenum Hexacarbonyl

tert-Butyl hydroperoxide converts nitronate salts into aldehydes or ketones in the presence of oxovanadium(IV) bisacetylacetonate or molybdenum hexacarbonyl as a catalyst. (144) Ketals, acetals, and alkenes survive the reaction. Unfortunately, most of the published examples of this reaction give yields determined only by gas chromatography. A slight excess of the hydroperoxide leads to overoxidation of primary nitro compounds, and systems containing ketone or ester groups require refluxing benzene and molybdenum hexacarbonyl as a catalyst. (144) Furthermore, water appears to inhibit the reaction so that 90–100% tert-butyl hydroperoxide is required. (145)

$$CH_{3}CO(CH_{2})_{2}CH(NO_{2})C_{2}H_{5} \xrightarrow{1. KOC_{4}H_{9}-t, t-C_{4}H_{9}O_{2}H} CH_{3}CO(CH_{2})_{2}COC_{2}H_{5}$$

$$(60\%)$$

3.3.1.2.5. Oxodiperoxomolybdenum(VI)/Pyridine/Hexamethylphosphoric triamide

The salts of secondary nitro compounds are converted into ketones by the pyridine/hexamethylphosphoric triamide (HMPA) complex of molybdenum(VI) peroxide. (145) Since this reagent is known to effect hydroxylations of carbanions, it is assumed that the reaction proceeds via an intermediate α -nitroalcohol, which then loses nitrous acid. Nitronates from primary nitro compounds yield carboxylic acids instead of aldehydes as a result of rapid oxidation of the latter under the reaction conditions. The nitronate salts can be formed with either lithium diisopropylamide (LDA) or triethylamine. Ester groups and activated benzylic positions are tolerated. Ethyl pyruvate is obtained from ethyl 2-nitropropanoate in 73% yield.

3.3.1.2.6. Hydrogen Peroxide

Another modified Nef reaction uses mild reaction conditions. The nitro compound is stirred at room temperature with 30% hydrogen peroxide and potassium carbonate in methanol followed by acidification with dilute hydrochloric acid. (146, 147) Isolated yields of both aldehydes and ketones are 76–96%. (147) For example, hexanal is isolated in 80% yield, while an 88% yield of cyclohexanone is obtained. (147) The combination of mild conditions and high yields makes this a very attractive alternative to the Nef reaction. Numerous other functional groups should survive under these conditions, although this has not been confirmed.

3.3.1.2.7. Ceric Ammonium Nitrate (CAN)

High yields of aldehydes and ketones can be obtained by stirring nitro compounds with triethylamine and ceric ammonium nitrate [ammonium cerium(IV) nitrate] in aqueous acetonitrile at 50°. (148) The carbonyl compounds are isolated in 67–85% yields. Initial conversion of the nitro compound into the *O*-trimethylsilyl nitronate with trimethylsilyl chloride and lithium sulfide permits the ceric ammonium nitrate step to proceed at room temperature in only 5 minutes with 90–92% yields of ketones being realized. 2-Fluorocyclohexanone is the only ketone produced by this method that contains any functional group.

3.3.1.2.8. *m*-lodoxybenzoic

Acid/N,N,N ,N -Tetramethyl-N'-tert-butylguanidine

A wide range of functional groups including esters, ketones, dithioketals, alkenes, and alcohols are inert to *m*-iodoxybenzoic acid and the weak base *N*,*N*,*N*, *N*, -tetramethyl-*N*'-tert-butylguanidine (TMBG); the nitro groups of several nitrosteroids are converted into carbonyl groups by this reagent combination in 33–95% yields. (149) 1,2-Diols also cleave readily. The only reported example of a primary nitro compound is an allylic system which gives the mixture of aldehydes 30 in 33% yield, isolated as the 2,4-dinitrophenylhydrazones. (149)

The reaction causes the double bond to isomerize in this system so that both compounds are formed.

3.3.1.2.9. Other Inorganic Salts

Several inorganic salts can be used to obtain vicinal dinitro compounds by the oxidative dimerization of nitronate salts, although the corresponding carbonyl compounds are also formed. (146, 150) For example, ammonium or sodium persulfate converts the anion of 2-nitrobutane into 2-butanone (48%) and 3,4-dimethyl-3,4-dinitrohexane (37%). (146) Aldehydes can be obtained in low yields (27–38%), although benzaldehyde is obtained in 75% yield. Only ketones are obtained from highly conjugated nitronates (Eq. 3). (151, 152) Stirring 2-nitropropane with cupric chloride and ammonium hydroxide

CHC(CH₃)=NO₂K
$$\frac{(NH_4)_2S_2O_8}{N_8HCO_3, 40^{\circ}}$$
 CHCOCH₃ (3)

in aqueous sodium hydroxide gives acetone in 75–90% yield. (146) No other examples of this reagent combination are reported. Low yields of acetone (25–30%) are obtained from the exposure of 2-nitropropane and sodium hydroxide to silver nitrate. (146) Fluorenone is obtained in 33% yield from 9-nitrofluorene by this method. (150) Acetone is isolated in 55% yield as the 2,4-dinitrophenylhydrazone when 2-nitropropane is combined with sodium hydroxide and potassium ferricyanide. (147) Sodium bromate gives an unreported amount of acetone from sodium 2-propanenitronate. (146)

In summary, only persulfate ion seems to be of any synthetic value for the preparation of ketones.

3.3.1.3. Reducing Agents

Only a small number of reagents convert nitro compounds into the corresponding aldehydes and ketones by a reductive process. Nonetheless, this is an important extension of the Nef reaction. Five reagents are discussed with the most significant method mentioned first. It is assumed that most of these processes involve oximes as intermediates; indeed, several methods give oximes as isolable products which can be hydrolyzed to complete this reductive alternative to the Nef reaction. Finally, in electrolysis, the reducing electrons are obtained from an electrical source rather than a chemical one.

3.3.1.3.1. Titanium Trichloride

The most widely used reductive modified Nef reaction uses freshly prepared aqueous titanium trichloride. (153) The reactivity of this reagent requires manipulation under an inert atmosphere. The reducing agent can be stored over zinc for prolonged periods of time. (153) Unfortunately, aqueous titanium trichloride is very acidic (pH < 1) so that esters may suffer

$$C_2H_5CH(NO_2)(CH_2)_2COCH_3$$
 $\xrightarrow{TiCl_3, H_2O}$ $C_2H_5CO(CH_2)_2COCH_3$ (85%)

hydrolysis, carbon–carbon double bonds may isomerize, and ketals are deprotected. (154) 2-Methyl-2-nitropropane is cleaved to acetone with hot titanium trichloride. (155) The use of an ammonium acetate or sodium acetate buffer allows

$$CH_3CH(NO_2)(CH_2)_2CO_2CH_3 \xrightarrow{TiCl_3} CH_3CO(CH_2)_2CO_2H$$

$$(40\%)$$

the reaction to proceed at pH 5–6 with the survival of these functional groups. (99, 136, 154-160) Under these conditions, the reaction is successful even with systems prone to acid-catalyzed rearrangements, such as compound 31. (161)

Aldehydes can be prepared from some nitrosteroids (154, 162) that do not undergo the conventional Nef reaction. (163) This method also succeeds in some cases that do not work well with an oxidative Nef method, such as compound 32. The latter fails to give the corresponding ketone with buffered potassium permanganate. (136)

$$\begin{array}{c|c} CH_2C_6H_5 & CH_2C_6H_5 \\ \hline O & N & \hline \\ NO_2 & \hline \\ & & NaO_2CCH_3 & \hline \\ & & & \\ \hline & & & \\ & & & \\ \hline &$$

Compounds containing several functional groups also undergo the desired reaction (Eq. 4). (160) This example illustrates that the nitronate anion is often formed prior to addition of the buffered titanium salt, although there are examples where the nitronate salt is not preformed. (158, 161)

OH
$$CH_{2}CH(NO_{2})(CH_{2})_{4}CO_{2}CH_{3}$$

$$RO CH=CHCH(OR)C_{5}H_{11}-n$$

$$R = t-C_{4}H_{9}Si(CH_{3})_{2}$$

$$OH$$

$$CH_{2}CO(CH_{2})_{4}CO_{2}CH_{3}$$

$$RO CH=CHCH(OR)C_{5}H_{11}-n$$

$$RO CH=CHCH(OR)C_{5}H_{11}-n$$

$$RO CH=CHCH(OR)C_{5}H_{11}-n$$

$$RO CH=CHCH(OR)C_{5}H_{11}-n$$

$$RO CH=CHCH(OR)C_{5}H_{11}-n$$

$$RO CH=CHCH(OR)C_{5}H_{11}-n$$

A useful synthetic application of the Nef reaction is the generation of a 1,4-dicarbonyl compound from an α , β -unsaturated carbonyl precursor via the nitro compound 33. Titanium trichloride is used for the modified Nef reaction

$$R^{1}CH_{2}NO_{2} + R^{2}CH = CR^{3}COR^{4}$$
 $R^{1}CH(NO_{2})CHR^{2}CHR^{3}COR^{4}$

$$33$$

$$R^{1}COCHR^{2}CHR^{3}COR^{4}$$

step of this sequence. (153, 154) For example, 1-nitropropane reacts with methyl vinyl ketone in the presence of diisopropylamine to give 5-nitro-2-heptanone in 55% yield. Treatment of the latter with titanium trichloride gives 2,5-heptadione in 85% yield. (154)

An alternative preparation of nitro compound 33 by using Lewis acids to catalyze the reaction of enol silyl ethers with nitroolefins is an even more convenient synthetic procedure because it is often a one-pot operation. (164-168) The Lewis acids used are often titanium tetrachloride and stannic chloride; aluminum chloride has been used occasionally. An *O*-silyl species 34 is assumed to be an intermediate (Eq. 5). Recently, the intermediate 34 was

$$R^{3}CH = CR^{4}OSi(CH_{3})_{3} + R^{2}CH = CR^{1}NO_{2} \longrightarrow \begin{bmatrix} R^{2} & R^{1} \\ R^{3} & N^{+}O \\ R^{4} & O \end{bmatrix}$$

$$\longrightarrow R^{4}COCHR^{3}CHR^{2}COR^{1}$$
(5)

isolated, examined spectroscopically, and purified when dichlorodiisopropoxytitanium was used as the catalyst. (169) Hydrolysis of 34 to the 1,4-dicarbonyl compound is easy and is quantitative when titanium tetrachloride, stannic chloride, or aluminum chloride is used. (164-168) A change in stereoselectivity in

OSi(CH₃)₃ + CH₂=C(NO₂)C₂H₅
$$\frac{1. \text{ TiCl}_4, \text{CH}_2\text{Cl}_2}{2 \text{ H}_3\text{O}^*}$$
 CH₂COC₂H₅ (76%)

the nitro ketone **33** is observed in some systems when dichlorodiisopropoxytitanium is used as the catalyst. (169)

3.3.1.3.2. Vanadium(II) Chloride

Simple ketones and aldehydes can be isolated in 24–71% yields by stirring nitro compounds with vanadium(II) chloride, aqueous hydrochloric acid, and dimethylformamide. (170) The pH is so low that acid-sensitive functionalities cannot survive. In fact, octanal is obtained from 1-nitrooctane in only 24% yield because of a competing aldol reaction.

3.3.1.3.3. Chromium(II) Chloride

Nitro compounds are converted by chromium(II) chloride (171) and aqueous hydrochloric acid in hot methanol into the corresponding aldehydes and ketones in 32–77% yields, isolated as 2,4-dinitrophenylhydrazones. (172) Since this reagent reduces nitrobenzenes and sulfoxides as well, another reducible functionality cannot be present. Oximes are obtained by combining steroidal nitro compounds with chromium(II) chloride with a brief reflux period (Eq. 6) (173) or at room temperature. (174) Chromium(II) chloride

is unstable and has to be generated in situ as in Eq. 6.

3.3.1.3.4. Ascorbic Acid

Another reductive method uses ascorbic acid to transform stabilized nitronate salts into the corresponding ketones. (152) Thus diketones are obtained in 8–37% yields from nitro enamines and ketones (Eq. 7).

$$R^{1}COCH_{2}R^{2} + (CH_{3})_{2}NCH = C(CH_{3})NO_{2}$$

$$R^{1}COC(R^{2}) = CHC(CH_{3}) = NO_{2} - \frac{\text{ascorbic acid}}{HCI} \quad R^{1}COC(R^{2}) = CHCOCH_{3}$$
(7)

Ammonium persulfate can also be used, but the product yields are lower than with ascorbic acid. (152) Additionally, the use of copper with the ascorbic acid gives saturated 1,4-diketones in 33–46% yields. (152) Zinc chloride catalyzes this conversion, but the yields are lower than with copper and ascorbic acid. (152)

3.3.1.3.5. Tributylphosphine/Diphenyl Disulfide

This reagent provides another very mild method for accomplishing a reductive Nef reaction. Secondary nitro compounds and nitroalkenes give imines, which are hydrolyzed to ketones

$$RR^{1}CHNO_{2} \xrightarrow{(n-C_{4}H_{9})_{3}P} RR^{1}C=N + \underbrace{C_{6}H_{5}S)_{2}}_{CC_{6}H_{5}S)_{2}} RR^{1}C=N + \underbrace{C_{6}H_{5}S)_{2}}_{CC_{6}H_{5}S)_{2}}_{-(n-C_{4}H_{9})_{3}PO}$$

$$RR^{1}C=NOH \xrightarrow{(n-C_{4}H_{9})_{3}P} RR^{1}C=NH \xrightarrow{H_{2}O} RR^{1}C=O$$

upon aqueous workup. A primary nitro compound subjected to these conditions gives a nitrile. (175)

$$\begin{array}{c} \text{CH=C(NO}_2\text{)CH}_3 & \text{1. } \text{C}_6\text{H}_5\text{SH}, \text{ (C}_6\text{H}_5\text{S})_2,} \\ & \underbrace{\text{(C}_2\text{H}_5\text{)}_3\text{N (cat.)}}_{2. \text{ (n-C}_4\text{H}_9)_3\text{P}} \\ & \text{CH(SC}_6\text{H}_5\text{)COCH}_3 \end{array}$$

3.3.1.3.6. Formation and Hydrolysis of Oximes

Some reagents transform nitro compounds into oximes that can be hydrolyzed subsequently to give aldehydes or ketones. (176-178) The oldest of these is zinc chloride, usually in the presence of hydrochloric acid (Lucas Reagent).

(179-183) For example, glutaraldehyde dioxime is obtained from 1,5-dinitropentane in 55–60% yield. (180) The only examples of this reaction are with compounds that lack other functionalities which might be hydrolyzed by zinc chloride and hydrochloric acid.

A variety of other reagents can be used to generate oximes from nitro compounds. Copper salts such as copper(II) acetylacetonate catalyze the conversion of nitroparaffins into oximes in 52–89% yields in a carbon monoxide atmosphere and in the presence of diamines. (184) Iron and acetic acid convert nitro compound 35 into the corresponding oxime, which is converted without isolation into the aldehyde by steam distillation in the presence of formaldehyde at pH 2.5 in 40% overall isolated yield. (185) Carbon disulfide and triethylamine

$$O_2NCH_2C(CH_3) = CHCH_2O_2CCH_3 \xrightarrow{Na_2CO_3, 85^{\circ}} O = CHC(CH_3) = CHCH_2O_2CCH_3$$
35
(40%)

yield oximes from nitro compounds in 29–85% yields under mild conditions. (185a) The most reactive substrates are allyl derivatives.

$$\begin{array}{c} \text{CH}_2\text{NO}_2 \\ \hline \\ \text{CS}_2, \ (\text{C}_2\text{H}_5)_3\text{N} \\ \hline \\ \text{CH}_3\text{CN}, \ 5 \ \text{h} \end{array}$$

Primary nitro groups give nitriles upon *prolonged* reaction times, as in the case of tributylphosphine and diphenyl disulfide reactions. (175) In an atypical reaction, lithium aluminum hydride converts a nitro amine into the corresponding oxime. (186)

$$CH_3$$
 CH_3
 CH_3

Hydroxylamine *N,N*-disulfonic acid and sulfuric acid convert the salt of nitrocyclohexane into the oxime in 85–90% yield. (187) Basic sodium amalgam or zinc dust also transforms nitro compounds into oximes, (188) as does sulfuric acid with either sodium thiosulfate (189) or hydrogen sulfide. (190) Thus the salt of nitrocyclohexane gives the oxime in 77–80% yields. (189, 190) Finally, β , β -diarylnitro compounds are converted into the corresponding nitronic acids, which give oximes when boiled in methanol. (191)

3.3.1.3.7. Electrolysis

The nitro functionality is a strongly electron-withdrawing group and thus acts as a good electron sink. Consequently, it is not surprising that electrochemical reactions of nitro compounds are possible. Electrolysis of 2-nitropropane gives acetone in 50% yield in addition to a "high boiling residue" which apparently contains 2,3-dimethyl-2,3-dinitrobutane. (192) Nitromethane and nitroethane give *N*-methylhydroxylamine and *N*-ethylhydroxylamine, respectively, when electrolyzed in the presence of trimethylamine. (192) Electrolysis of nitro ketones, nitro esters, and a nitro nitrile in the presence of sodium formate gives 40–90% isolated yields of diketones, keto esters, and a ketonitrile, respectively. (193) Furthermore, electrolysis of nitro compounds in the presence of oxygen produces ketones in 55–86% isolated yields. (194) Both ester and ketone carbonyls as well as ketal groups survive the process. (193-195) Presumably, oxygen is converted into superoxide, which functions as a base in leading to the Nef-like reaction. (194)

$$CH_3CH(NO_2)CH_2CH(CH_3)CO_2CH_3 \xrightarrow{Electrolysis} CH_3COCH_2CH(CH_3)CO_2CH_3$$

$$(n-C_4H_9)_4N^+Br^- \qquad (76\%)$$

3.3.2. Other Reagents

3.3.2.1.1. Sodium Nitrite/Alkyl Nitrites

The reagent combination of sodium nitrite and an alkyl nitrite ester in dimethyl sulfoxide is useful because it avoids strong acids or bases. (196-198) The nitro compound is apparently deprotonated by sodium nitrite, and the nitronate anion is nitrosated by the alkyl nitrite. The isolated yields from this room-temperature reaction are 67–90%. (197, 198) Ketones, amides, 1,3-dithianes, and aromatic rings survive the reaction. (197, 198) Carboxylic acids are obtained from primary nitro compounds, while ketones are isolated as expected from secondary nitro systems. (196-198)

$$CH_3CO(CH_2)_2CH(NO_2)CH_3$$
 $NaNO_2 \longrightarrow CH_3CO(CH_2)_2COCH_3$
 $(CH_3)_2SO, 25^{\circ}$
 (76%)

3.3.2.1.2. Silica Gel

Silica gel can be used to effect the Nef reaction. (152, 199) A solution of a nitronate salt is generated and poured through a column of dry silica gel. The reaction probably occurs because of the acidity of the silica gel and is a true Nef reaction. The yields for the two steps in systems such as those in Eq. 7 (p. 677) with a silica gel second step are 21–73% (diketones) (152) and 26–59% (γ -ketoesters). (199)

Basic silica gel can also be used to obtain Nef products. (200, 201) Silica gel is mixed with methanolic sodium methoxide, the methanol is removed, and the resulting solid is activated at 400° to give a stable, basic silica gel. Nitro compounds are mixed with a large excess of this reagent (typically, a five-fold excess of sodium methoxide is used) (200) and then eluted to give the pure aldehyde or ketone in excellent yields (60–99%). (200) The reaction times are fairly long (48–120 hours); (200, 201) these times can be reduced by using heat, although this can result in lower yields. (201) Despite the basicity of the reagent, aldehydes such as heptanal are obtained in good yields. (200) Ketal, alkene, and ketone functionalities survive these reaction conditions.

$$n-C_7H_{15}NO_2$$

$$\begin{array}{c}
NaOCH_3 \\
\hline
silica gel, 80^\circ
\end{array}$$
 $n-C_6H_{13}CHO$
(87%)

Potassium permanganate on silica gel can be used to generate ketones from secondary nitro compounds. (202, 203) A wide variety of 1,4-diketones are obtained in 72–91% yields from γ -nitroketones by combination with a

stoichiometric amount of potassium permanganate on silica gel in benzene at reflux temperatures. Some systems react at room temperature without solvent.

$$CH_3CO(CH_2)_2CH(NO_2)CH_3$$
 $\xrightarrow{KMnO_4}$
 $CH_3CO(CH_2)_2COCH_3$
benzene, 80°, 3.5 h
(55%)

3.4. Related Reactions of Nitro Compounds Leading to Nef Products

3.4.1.1. Alkylation or Acylation of Nitro Compounds Followed by Hydrolysis Nitronate anions react with electrophiles on either carbon or oxygen. Protonation leads to either regeneration of the nitro compound or the Nef reaction. Alkylation or acylation normally leads to the *O*-alkyl (nitronic ester) or *O*-acyl (nitronic anhydride) products. Nitronic esters are prepared most effectively by alkylation of nitronates with an oxonium salt. (204) They are rapidly converted into carbonyl compounds by aqueous acids. (15) Nitronic anhydrides are generally not stable, (205-208) and those from primary nitro compounds give nitrile oxides which can be trapped by dimethyl acetylenedicarboxylate. (208)

Alkylation of nitro compounds followed by hydrolysis gives carbonyl compounds. (15, 151) For example, nitronate 36 gives an 85% yield of the corresponding

$$C_6H_5COCH = CHC(CH_3) = NO_2K$$

$$\frac{1. (CH_3O)_2SO_2}{2. H_3O^+} C_6H_5COCH = CHCOCH_3$$
36
(85%)

diketone upon treatment with dimethyl sulfate and hydrolysis. (151) Dinitronate 37 gives the corresponding trione in 55% yield. (151) An oxime is obtained

$$KO_{2}N = C(CH_{3})CH \xrightarrow{CHC(CH_{3})=NO_{2}K} \xrightarrow{\frac{1. (CH_{3}O)_{2}SO_{2}}{2. C_{2}H_{5}OH, \text{ heat}}}$$

$$37$$

$$CH_{3}COCH \xrightarrow{CHCOCH_{3}} CHCOCH_{3}$$

by this procedure in ethanol (Eq. 8), but no reaction occurs in either diethyl ether

$$CH=NO_2K$$

$$CH_3I \text{ or } C_2H_5I$$

$$C_2H_5OH$$

$$(8)$$

or benzene, presumably because of insolubility of the nitronate salt. (209)

Acylation of nitronates gives the *O*-acylnitronic anhydrides as relatively unstable intermediates. (205-208) Some of these products can be isolated, albeit in low yields (Eq. 9). (205) Hydrolysis of the product from Eq. 9 with water gives

$$i-C_3H_7NO_2$$
 CH_3CO_2K $CH_3)_2C=N O_2CCH_3$ (9)

acetone and acetic acid. Primary nitroparaffins are oxidized to carboxylic acids with acetic anhydride and weak bases. (206-208) For example, benzoic acid is obtained in 78% yield by refluxing phenylnitromethane with acetic anhydride and sodium acetate followed by hydrolysis. (208)

3.4.1.2. Reactions of Nitroolefins

Conjugated nitroolefins are used as acceptors for many nucleophiles to provide useful substrates for the Nef reaction, as seen in earlier sections of this chapter; however, there are other reactions where the nitroolefin is converted directly into a Nef product.

Nitroolefins can be reduced by metals to give either oximes or ketones. For example, aluminum amalgam converts the polyfunctional molecule **38** into the oxime **39**. (210) More recent work utilizes zinc in acetic acid for this

$$C_2H_5O_2C$$
 $C_2H_5O_2C$
 $C_2H_5O_2C$

conversion. (211-214) For example, 6-nitrocholesteryl chloride gives the ketosteroid **40** in 79–93% yields when allowed to react under these conditions. (211, 212)

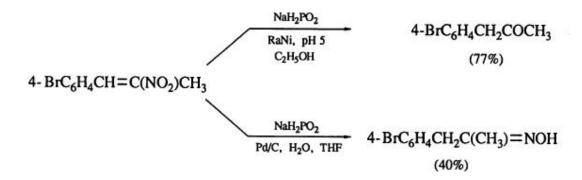
Rearrangements can occur, (214) however, several methylpyranosides containing

nitroolefin groups produce the corresponding oximes in high yields, (213) showing that acetal groups survive such treatment. Iron and iron(III) chloride react

with nitrostyrenes in hydrochloric acid to give ketones in a wide variety of systems. 213a

$$4-(CH3CONH)C6H4CH=C(NO2)CH3 \xrightarrow{Fe, FeCl3} 4-(CH3CONH)C6H4CH2COCH3$$
(68%)

Chromium(II) chloride also produces ketones in 52–81% yields from nitroolefins. (215) This is in contrast to earlier reports of their conversion into α -hydroxyketones, (216-218) which were initially proposed to arise by reduction to the nitroso alkene. Chromium(II) chloride can be used to obtain α -diketones


$$C_{NO_2}$$
 $C_{rCl_2, HCl}$
 $C_{rCl_2,$

via the same types of intermediates. (219) Some acyclic β -aryl- α , β -unsaturated nitroolefins give saturated oximes with chromium(II) chloride. (220)

$$ArCH=C(R)NO_2$$
 $CrCl_2$ $ArCH_2C(R)=NOH$

Stannous chloride in alcohols or thiols converts nitro compounds into the corresponding α -alkoxy or α -alkylthio ketones. (221) For example, this reagent converts nitrocyclohexene in ethanol into 2-ethoxycyclohexanone in

Other reducing agents give various results. Sodium borohydride (213) or o-phenylenediamine aminals (222) give saturated nitro compounds. Sodium borohydride/3 gives hydroxylamines by reduction of the intermediate nitronates. (223) Lithium tri-sec-butylborohydride converts nitroalkenes into ketones after acid hydrolysis in 80–83% yields. (224) The inverse addition of lithium aluminum hydride to terminal nitroalkenes gives aldimines. (225) A combination of sodium hypophosphite and Raney nickel reduces nitroolefins to ketones in 52–92% yields without affecting other functional groups such as esters and aromatic nitro groups. (226) Sodium hypophosphite and palladium convert nitroolefins into oximes. (227) Some nitroolefins are converted into α -chloro oximes

in good yield by exposure to gaseous hydrogen chloride in ether. (228) Tributyltin hydride reduces nitroalkenes to tributyltin nitronate esters, which react with *m*-chloroperoxybenzoic acid or ozone to give aldehydes or ketones. (228a)

$$4-CH_3OC_6H_4CH=C(NO_2)CH_3 = \frac{1. (n-C_4H_9)_3SnH}{2. MCPBA} = 4-CH_3OC_6H_4CH_2COCH_3$$
(90%)

Free-radical addition of nitroolefins to substituted thiopyridones in the presence of azobis(isobutyronitrile) (AIBN) gives adducts which are decomposed with titanium trichloride to yield ketones or acids in good yields. (229)

$$R^{1}CH = C(NO_{2})R^{2} \xrightarrow{AIBN} RCH(R^{1})C(NO_{2})(R^{2})S \xrightarrow{TiCl_{3}} RCH(R^{1})COR^{2}$$

Nitrohydrazones such as **41** give acylhydrazines after treatment with hydrochloric acid followed by aqueous pyridine. (230, 231)

$$C_6H_5C(NO_2)=NNHC_6H_5$$
 $\frac{1. HCl}{2. Py, H_2O}$ $C_6H_5CONHNHC_6H_5$

Potassium superoxide produces flavanols in low yields from nitroalkenes. The major products are salicylic acids and benzoic acids. (231a)

$$\begin{array}{c|c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

3.4.1.3. Reactions of Nitroepoxides

Conjugated nitroolefins can be converted into the corresponding nitroepoxides with basic hydrogen peroxide. (232) Reduction with lithium aluminum hydride (232) or sodium borohydride (233) gives the

$$RCH = C(NO_2)R^1 \qquad \xrightarrow{H_2O_2} \qquad RCH - C(NO_2)R^1$$

$$\xrightarrow{H^-} \qquad (RCH_2COR^1) \qquad \xrightarrow{H^-} \qquad RCH_2CHOHR^1$$

alcohol expected from reduction of the Nef product. Opening of the epoxide with nucleophiles other than hydride yields α -substituted ketones. (234-235b) Catalytic

palladium tetrakis(triphenylphosphine) converts several nitroepoxides into 1,2-diketones. (236)

3.4.1.4. Photolysis

There are a few reports of the photolysis of nitro compounds where Nef products are formed. Several nitrosteroids undergo photolysis (237-239) in the presence of a base such as sodium ethoxide in ethanol to give ketones and hydroxamic acids as major products. (239) No ketone is obtained

$$\begin{array}{c} \text{NO}_2 \\ \text{hu} \\ \text{NaOC}_2\text{H}_5 \\ \text{C}_2\text{H}_5\text{OH} \\ \text{HO} \end{array} + \left\{\begin{array}{c} \text{OH} \\ \text{N} \\ \text{N} \\ \text{OH} \\ \text{NO} \\ \text{OH} \\ \text{NO} \\ \text{OH} \\$$

from photolysis in isopropyl alcohol or diethyl ether. (237) The corresponding nitro compound with a 13 β methyl group gives 11% of the ketone, 55% of the hydroxamic acid, and 7% of a cyclopropane. (239) It is surprising that irradiation

of this nitrosteroid with sodium methoxide in methanol gives 78% of the hydroxamic acid and only 1% of the ketone. (238) It is not clear if the choice of alkoxide base is critical, but this seems to be the only explanation consistent with the reported facts. In many nonsteroidal systems, the predominant reaction product is also the hydroxamic acid, as with nitrocyclohexane and sodium methoxide, which gives the *N*-hydroxylactam **42** in 28% yield. (238)

Several reports deal with the photochemistry of unsaturated nitro compounds. (240-243) For example, irradiation of β -methyl- β -nitrostyrene in the presence of either styrene or 2,3-dimethyl-2-butene gives the keto oxime 43 in 79% yield. (240) In acetone, 43 is obtained in 80% yield, but benzaldehyde (6%)

$$C_6H_5CH = C(NO_2)CH_3$$
 hv $C_6H_5CH = CH_2$ $C_6H_5C = NOH)COCH_3$ or $(CH_3)_2C = C(CH_3)_2$ 43 (79%)

is also detected. (242) With the analogous *p*-nitro compound, a 61% yield of the keto oxime is formed along with *p*-nitrobenzaldehyde (15%). (242) Photolysis of 9-nitroanthracene gives anthraguinone in 21% yield in addition to

10,10 -bianthrone (55%). The use of nitric oxide during this latter reaction increases the yield of anthraquinone to 77% while that of bianthrone drops to 9%. (240) β -Nitrostyrene is reduced by photolysis in the presence of N,N -dioctyl-4,4 -bipyridinium dibromide and ruthenium tris(bipyridine) dichloride to give phenylacetaldehyde and/or the corresponding oxime. (243)

The photolysis of nitroolefins without any added base or participating solvent has also been reported. 6-Nitrocholesteryl acetate gives the \triangle ^{4,5} isomer in 30% yield in addition to 2–3% of the corresponding enone **44** and 10%

of an oxazole. (241) γ -Hydrogen abstraction occurs to give the conjugated nitronic acids as intermediates in the formation of enones. (244) Several nitronic acids yield ketones upon irradiation, but other products are also formed. (244)

3.5. Synthetic Utility

The common occurrence of the carbonyl group in organic molecules makes the Nef reaction significant in organic synthesis. The nitro functionality is most commonly introduced as a nucleophile—either a nitronate anion or nitrite ion. The Nef reaction allows the nitronate anion to become an acyl anion equivalent of great utility—particularly from conjugate addition reactions.

Even though many aldehydes and ketones, including many that are sensitive like those containing a β -lactam (2), can be prepared by the Nef reaction, this process suffers from several problems. Traditionally, the reaction is carried out in an aqueous medium so that higher molecular weight nitro compounds do not perform well. The use of water-miscible organic cosolvents largely

overcomes this deficiency. A more serious problem is the harshness of the reaction conditions, especially the pH of the Nef process. Numerous polyfunctional molecules undergo side reactions as a result. Modified Nef reactions avoid this difficulty by the use of milder conditions, as shown in Eq. 4. The most significant of these approaches involve potassium permanganate, ozone, or titanium trichloride.

It is not easy to generalize on which methods will work best with a new nitro compound since efficiency seems to be highly dependent upon the substrate. That is, one method will work better with some nitro compounds while another method will be superior with other compounds. Nevertheless, some information may be gleaned from methods used on related substrates in Table I.

It is clear that nitro compounds of lower molecular weight can be converted into the carbonyl product in many ways. The absence of other functional groups widens the choice of methods that can be used, although the traditional Nef reaction may be among the best. For example, nitrocyclohexane gives cyclohexanone in 85–97% yields when treated with base followed by acid. (10, 16) Potassium permanganate with aqueous hydroxide effects this transformation in quantitative yield, (16) but the yield drops to 93% when methanol is the solvent. (131) Some other modified Nef approaches are only slightly less effective; for example, cyclohexanone is obtained in very good yields when nitrocyclohexane is allowed to react with *tert*-butyl hydroperoxide-oxovanadium(IV) bisacetylacetonate (86%), (144) molybdenum peroxide (86%), (145) or ceric ammonium nitrate (80%). (148) Sodium methoxide on silica gel effects a 99% conversion. (200)

As the complexity of the substrate increases, the choice of viable methods is reduced sharply. Ester or acetal groups rarely survive either the usual Nef reaction conditions or nonbuffered titanium trichloride. (154, 156) Such acid-sensitive compounds are best treated with permanganate, buffered titanium trichloride,

or ozone. The last method cannot be used with unsaturated systems or acetals unless the amount of ozone is carefully controlled. Several specific reactions are shown to illustrate selectivity (see also compound 2).

4. Experimental Procedures

4.1.1.1. 3-endo-Methylbicyclo[2.2.1]heptan-2-one (Sodium Hydroxide and Sulfuric Acid) (8)

3-exo-Methyl-2-endo-nitrobicyclo[2.2.1]heptane (35.6 g, 0.23 mol) was added to a solution of sodium hydroxide (12 g, 0.3 mol) in 150 mL of water. After 2 hours, deprotonation was complete and the reaction mixture was filtered and extracted with ether to remove any neutral organic compounds. The nitronate solution was added slowly dropwise to a well-stirred solution of 25 mL of concentrated sulfuric acid in 150 mL of water at 0–5°. Nitrous oxide was evolved and the reaction mixture turned blue-green. Extraction with three 50-mL portions of ether gave, after distillation,

3-endo-methylbicyclo[2.2.1]heptan-2-one: 14.5 g (51%), bp 59-61.5° (10 mm),

1.4677, 2,4-dinitrophenylhydrazone mp 114–118°, semicarbazone mp 185–187°.

4.1.1.2. Methyl 4-Oxo-2-phenylpentanoate (Hydrochloric Acid) (37) Methyl phenylacetate (0.075 g, 0.5 mmol) was added dropwise to 0.6 mmol of lithium diisopropylamide dissolved in 3 mL of tetrahydrofuran at -78° under nitrogen. After 30 minutes of stirring, the reaction mixture was cooled to -100° (dry ice/ether), and 0.065 g (0.75 mmol) of 2-nitropropene was added dropwise. Stirring was continued while the temperature was allowed to rise slowly to 10° over 5 hours. Dilute hydrochloric acid (3 mL of 17% acid) was added at 0° , and the mixture was stirred overnight at 0° . Dilution with water and extraction with methylene chloride gave a crude product which was purified by preparative TLC to give 0.081 g (79%) of methyl 4-oxo-2-phenylpentanoate: mp 70– 71° ; IR (NaCl) 1740–1710 cm⁻¹; ¹H NMR (CDCl₃) δ 2.12 (s, 3H), 2.67 (dd, J = 4 and 18 Hz), 3.36 (dd, J = 10 and 18 Hz, 1H), 3.60 (s, 3H), 4.07 (dd, J = 4 and 10 Hz, 1H), 7.22 (s, 5H).

4.1.1.3. 2-(1-Cyanocyclohexyl)-2-methylpropanal (Sodium tert-Butoxide and Potassium Permanganate) (127)

A 60% oil dispersion of sodium hydride (0.20 g, 5.0 mmol) was washed with pentane under nitrogen and was mixed with 20 mL of *tert*-butyl alcohol. The mixture was stirred for 10 minutes while a solution of

2-(1-cyanocyclohexyl)-2-methyl-1-nitropropane (0.42 g, 2.0 mmol) in 20 mL of *tert*-butyl alcohol was added. After 20 minutes of additional stirring, 400 mL of ice-cold pentane was added followed by 50 g of ice and an ice-cold solution of potassium permanganate (0.237 g, 1.5 mmol) in 80 mL of water. The reaction mixture was stirred for 10 minutes, and 2 mL of 1 M sodium metabisulfite was added followed by 4 mL of 1 M sulfuric acid. The phases were separated and the aqueous layer was extracted with pentane. The combined organic layers were washed with brine to give, after drying, concentration, and flash

chromatography on silica gel using benzene–pentane (1:1), 0.293 g (82%) of 2-(1-cyanocyclohexyl)-2-methylpropanal: mp 61.5–62°; 1 H NMR (CDCl₃) 5 1.22 (s, 6*H*), 1.3–2.2 (m, 10*H*), 9.72 (s, 1*H*); IR (KBr) 2720, 2220, 1710 cm $^{-1}$.

- 4.1.1.4. Dimethyl 4-Oxopimelate (Sodium Methoxide and Ozone) (141) Dimethyl 4-nitropimelate (4.66 g, 0.02 mol) was dissolved in 50 mL of anhydrous methanol and stirred with sodium methoxide (1.08 g, 20 mmol) for 10 minutes. This solution was cooled to –78°, and ozone/oxygen was bubbled through until an excess had been used as evidenced by a light-blue color. The ozone generator was turned off, and after 30 minutes nitrogen was bubbled through to remove excess ozone, and 5 mL of dimethyl sulfide was added. The reaction mixture was allowed to warm to room temperature and stand for 16 hours. It was concentrated and the residue was dissolved in ether and washed with water. Evaporation of the solvent gave the crude product, which was recrystallized from hexane to give 3.55 g (88%) of dimethyl 4-oxopimelate, mp 49–50°.
- 4.1.1.5. Cyclohexanone [Oxovanadium(IV) Bisacetylacetonate] (144) Nitrocyclohexane (0.129 g, 1.00 mmol) was stirred at room temperature with 0.123 g (1.10 mmol) of potassium tert-butoxide in 2 mL of benzene for 15 minutes. A solution of 0.3 mL of 90% tert-butyl hydroperoxide, 3.5 mg of oxovanadium(IV) bisacetylacetonate, and 0.7 mL of benzene was added over a 15-minute period. After 20 minutes, the mixture was diluted with ether, washed with water and brine, and dried and the solvent was evaporated to give the equivalent of 0.84 g (89%) of cyclohexanone determined by GC.
- 4.1.1.6. Cyclohexanone [Oxodiperoxomolybdenum(VI), Pyridine, HMPA] (145) Nitrocyclohexane (0.43 g, 3.3 mmol) in 20 mL of tetrahydrofuran was added dropwise over a 5-minute period to a solution of diisopropylamine (0.90 mL, 6.7 mmol) and 2.8 mL (6.7 mmol) of *n*-butyllithium in hexane in 20 mL of tetrahydrofuran at –78°. The molybdenum peroxide pyridine HMPA complex (2.86 g, 6.6 mmol) was added quickly to the nitronate anion and the reaction mixture was allowed to warm to room temperature over 3 hours. The mixture was quenched with 40 mL of saturated aqueous sodium sulfite and was extracted twice with ether. The organic layers were washed with 5% hydrochloric acid, dried, and the solvent was evaporated to give 0.28 g (86%) of pure cyclohexanone after distillation.
- 4.1.1.7. Cyclohexanone (Ceric Ammonium Nitrate) (148)
 Nitrocyclohexane (0.65 g, 5.0 mmol) was stirred rapidly with 5 mL of triethylamine, and 14 mL of acetonitrile and ceric ammonium nitrate (2.75 g, 5.0 mmol) in 6 mL of water was added. The deep brown emulsion which formed was heated to 50° for 2 hours, cooled, diluted with acetonitrile, and filtered. The filtrate was dissolved in 100 mL of ether and washed with water

and dilute hydrochloric acid. Evaporation of the solvent gave 0.40 g (81%) of cyclohexanone.

4.1.1.8. 6-Methylcyclohex-3-en-1-one (Titanium Trichloride and Ammonium Acetate) (154)

An excess of buffered titanium trichloride was formed by mixing 4.6 g (0.06 mol) of ammonium acetate in 15 mL of water with 0.01 mol of 20% aqueous titanium trichloride. 5-Methyl-4-nitrocyclohexene in tetrahydrofuran was added rapidly and the reaction mixture was stirred for 45 minutes at room temperature. The reaction mixture was extracted with ether, the organic layers were washed with 5% sodium bicarbonate and brine and dried. Evaporation of the solvent gave 6-methylcyclohex-3-en-1-one in 60% yield: IR 3040, 1715 cm⁻¹; 2,4-dinitrohydrazone, mp 141°.

4.1.1.9. 3-(1-Methyl-2-oxocyclohexyl)-2-butanone (Titanium Tetrachloride) (167)

2-Nitro-2-butene (0.15 g, 1.5 mmol) was added rapidly to a solution of titanium tetrachloride (1.0 mmol) in 4 mL of methylene chloride under nitrogen at -78° . After 10 minutes of stirring, 2-methyl-1-trimethylsilyloxycyclohexene (0.18 g, 1.0 mmol) was added dropwise over 5 minutes. After another hour, the temperature was allowed to rise to 0° over 2 hours, and 1.5 mL of water was added. The reaction mixture was heated to reflux for 2 hours, cooled, and extracted with ethyl acetate. Evaporation of the solvent gave a residue which was filtered through alumina and distilled to give 0.13 g (71%) of 3-(1-methyl-2-oxocyclohexyl)-2-butanone: bp 88–89° (0.2 mm); IR (NaCl) 1701 cm⁻¹; ¹H NMR (CCl₄) δ 1.03 (s, 3*H*), 1.01 (d) and 1.15 (d, J = 7.5 Hz, 3*H*), 2.07 (s) and 2.10 (s) (3*H*), 2.80 (q) and 2.93 (q, J = 7.5 Hz, 1*H*).

4.1.1.10. Cyclohexanone (Sodium Methoxide and Silica Gel) (200) Nitrocyclohexane (0.5 g, 3.9 mmol) was mixed with 50 g of basic silica gel (prepared by mixing methanolic sodium methoxide with silica gel, evaporating the solvent to dryness, and activation at 400° for several hours—the amount of sodium methoxide per kilogram of silica gel was 0.5 molar equivalent). After 48 hours at room temperature, elution of the yellow silica gel with ether and evaporation of the solvent gave 0.38 g (99%) of cyclohexanone, pure by chromatography.

4.1.1.11. Undecane-2,5-dione (Potassium Permanganate and Silica Gel) (203) A solution of 5-nitroundecan-2-one (0.97 g, 4.5 mmol) in 30 mL of benzene was added to 15 g of potassium permanganate on silica gel [prepared from 1.18 g (7.5 mmol) of aqueous potassium permanganate and 15 g of silica gel after drying at 100° in a vacuum], and the mixture was stirred at reflux for 10 hours. The mixture was filtered and the solid was washed several times with ether. Evaporation of the solvent gave crude product which was passed through a column of alumina to give 0.33 g (40%) of undecane-2,5-dione,

which was about 90% pure by ¹H NMR.

5. Tabular Survey

An attempt has been made to include all known examples of the Nef reaction published through late 1988 in Table I. Entries in the table are organized by increasing number of carbon atoms in the basic structure of the nitro or nitronate substrate, excluding carbon atoms in ester and ether groups that are not involved in the reaction. Multiple products are given with the Nef product first. A dash in the yield column indicates that a yield was not reported. Some products are isolated as derivatives and are indicated with a D (2,4-dinitrophenylhydrazone), P (phenylhydrazone), A (anilide), or B (benzylphenylhydrazone). Unsuccessful Nef reactions are not given (see section on Side Reactions).

Abbreviations used in the table are as follows:

A anilide Ac acetyl

acac acetylacetonate

AIBN azobis(isobutyronitrile)

8-Azaflavin structure 28

B benzylphenylhydrazone CAN ceric ammonium nitrate

D 2,4-dinitrophenylhydrazone

DBU 1,8-diazabicyclo[4.4.0]undec-7-ene

DMF dimethylformamide
DMS dimethyl sulfide
DMSO dimethyl sulfoxide

e⁻ electrolysis

HMPA hexamethylphosphoric triamide

LDA lithium diisopropylamide

LICA lithium isopropylcyclohexylamide

MCPBA *m*-chloroperoxybenzoic acid

MIBA *m*-iodobenzoic acid P phenylhydrazone

Py pyridine

RaNi Raney nickel

rt room temperature
TBDMS tert-butyldimethylsilyl

TMBG N, N, N' , N' -tetramethyl- N^2 -tert-butylguanidine

TMS trimethylsilyl
Ts p-toluenesulfonyl

Table I. Nef Reaction of Nitro Compounds

View PDF

TABLE I. NEF REACTION OF NITRO COMPOUNDS

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs
1			
CH ₃ NO ₂	1. OH- 2. H+	CH ₂ O (—)	16
	 CH₂=CHCOCH₃, Al₂O₃ H₂O₂, K₂CO₃ 	CH3CO(CH2)2CO(CH2)2COCH3 (48)	245
	 CH₂=CHCOC₂H₅, Al₂O₃ H₂O₂, K₂CO₃ 	$C_2H_5CO(CH_2)_2CO(CH_2)_2COC_2H_5$ (50)	245
2			
CH ₃ CD ₂ NO ₂	1. NaOH 2. H₂SO₄	CH ₃ CDO (70)	246
$C_2H_3NO_2$	1. OH- 2. HCl	CH₃CHO (70)	2
	1. OH- 2. H*	" (77)	16
	1. Ca(OH) ₂ 2. H ₂ SO ₄	" (77)	21
	NaOH, 8-azaflavin (28)	" (—)	139
	 CrCl₂, CH₃OH HCl 	" (32-D)	172
	1 O , Al ₂ O ₃	O (68)	245
	2. H ₂ O ₂ , K ₂ CO ₃	COCH ₃	
	1. O , Al ₂ O ₃	(80)	245
	2. H ₂ O ₂ , K ₂ CO ₃	COCH ₃	

	TABLE 1. NEF REACTION OF NITRO COMPOUNDS (Continued)			
	Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
		CH_2 = $C(CH_3)CO_2CH_3$, C_6H_5N = NC_6H_5 , CH_3CN , e^-	CH ₃ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (60)	194
		CH ₃ CH=CHCO ₂ CH ₃ , C ₆ H ₅ N=NC ₆ H ₅ , CH ₃ CN, e	CH ₃ COCH(CH ₃)CH ₂ CO ₂ CH ₃ (59)	194
		$O_{3}CN_{3}CN_{4}CN_{5}CN_{5}CN_{3}CN_{5$	O (57)	194
			COCH ₃	
		$C_6H_5CH=CHCO_2C_2H_5$, $C_6H_5N=NC_6H_5$, CH_3CN , e^-	$CH_3COCH(C_6H_5)CH_2CO_2C_2H_5$ (46)	194
	HOCH ₂ CH=NO ₂ Na	1. СНО	CH ₂ OH CH ₂ OH (23)	247, 248
2		но—н н—он	н он но н	
		н—он	но—н + но—н	
		ĊH ₂ OH	н—он н—он	
			CH ₂ OH CH ₂ OH	
,		2. H ₂ SO ₄		
•	C ₃ (CH ₃) ₂ NCH=C(NO ₂)CH ₃	1. LICA	CH ₃ COCH=CHCO ₂ C ₄ H ₉ -t (7)	199
		 CH₃CO₂C₄H₀-t Silica gel 	, ,	
		1. LICA	$CH_3COCH=C(C_6H_5)CO_2C_2H_5$ (28)	199
		2. C ₆ H ₅ CH ₂ CO ₂ C ₂ H ₅ 3. Silica gel		
		1. LICA 2. C ₆ H ₅ CH ₂ CO ₂ C ₂ H ₅	" (—)	199
		 NaHCO₃, (CH₃O)₂SO₂ H₃O⁺, heat 		
		1. LICA	CH ₃ COCH=C(CO ₂ CH ₃)C ₆ H ₄ OCH ₃ -4 (22)	199
		2. 4-CH ₃ OC ₆ H ₄ CH ₂ CO ₂ CH ₃ 3. Silica gel		
		1. LICA 2. CH ₃ COSC ₂ H ₅	CH ₃ COCH=CHCO ₂ CH ₃ (7)	199
		3. CH₃OH, heat		
		1. LICA 2. CH₃COSC₂H₅	CH ₃ COCH=CHCOSC ₂ H ₅ (14)	199
		3. Silica gel 1. LICA	CH ₃ COCH=CHCO ₂ C ₂ H ₅ (18)	199
		2. CH ₃ CO ₂ C ₂ H ₅	,	
		 Silica gel LICA 	" (—)	199
		2. CH ₃ CO ₂ C ₂ H ₅ 3. NaHCO ₃ , (CH ₃ O) ₂ SO ₂		
		4. H ₃ O ⁺ , heat 1. LICA	(-)	199
1		2. 0	(-)	199
		0,	CHCOCH ₃	
		3. NaHCO ₃ , (CH ₃ O) ₂ SO ₂		
		4. H ₃ O ⁺ , heat 1. LICA	(42)	199
		2. 0	0	199
		٠,	O CHCOCH₃	
		<i>)</i> —	<i>)</i> —	
		3. Silica gel 1. LICA	(24)	199
		1. LICA 2. O	Q	177
		٥ ^١	о Снсосн,	
		\bigvee	\vee	

AIBN, TiCl₃

CO2CH3

CH2COCH3

(37)

" (79)

165, 167

2. HCl

1.

C(OCH₃)OSi(CH₃)₃

-	

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Re
	2. HCl 1. KOH, MgSO ₄	" (94-D)	124
CHNO	2. KMnO ₄	CH CHO (95)	- 21
n-C ₄ H ₉ NO ₂	1. NaOH 2. H ₂ SO ₄	n-C ₃ H ₇ CHO (85)	21
	1. Ca(OH) ₂	" (85)	21
	2. H ₂ SO ₄	4000000	
	1. KOH, MgSO ₄	" (83–97-D)	124
	2. KMnO ₄	" (_)	139
	NaOH, 8-azaflavin (28) 1. H ₂ O ₂	" (—) " (76)	147
	2. K ₂ CO ₃ , H ₂ O	(-5)	500
	3. HCl	and consequences and consequences	0.000
	NaOH, $(NH_4)_2S_2O_8$	" $(18-27) + n-C_3H_7C(NO_2) = CHC_3H_7-n$ (32)	150
C ₂ H ₃ CH(NO ₂)CH ₃	1. NaOH	$C_2H_3COCH_3$ (82)	21
0,213,011(1.102)0113	2. H ₂ SO ₄	0,22,00013, (02)	
	1. Ca(OH) ₂	" (86)	21
	2. H₂SO₄	" (94-D)	124
	1. KOH, MgSO ₄ 2. KMnO ₄	" (94-D)	124
	1. H ₂ O ₂	" (81)	147
	2. K ₂ CO ₃ , H ₂ O		
	3. HCl	" (40 P) + GH ((GH)/NO)((GH)	140
	NaOH, Na ₂ S ₂ O ₈	" $(48-D) + C_2H_3C(CH_3)(NO_2)C(CH_3)-(NO_2)C_2H_5$ (37)	146
i-C₄H₀NO₂	1. NaOH	i-C ₃ H ₇ CHO (32)	21
	2. H ₂ SO ₄	D 60 87 170	
	1. Ca(OH) ₂	" (36)	21
	2. H ₂ SO ₄ 1. KOH, MgSO ₄	" (73-D)	124
	2. KMnO ₄ NaOH, $(NH_4)_2S_2O_8$	" (20) + i -C ₃ H ₇ CH(NO ₂)CH(NO ₂)C ₃ H ₇ - i	150
t-C₄H₀NO₂	TiCl ₃ , H ₂ O, heat	(CH ₃) ₂ CO (—, D)	155
HOCH ₂ CH(NO ₂)C ₂ H ₅	1. OH-	HOCH ₂ COC ₂ H ₅ I (—) +	105
	2. H+	$HOCH_2C(=NOH)C_2H_5$ II (—) +	
	1. OH-	CH_2 = $C(NO_2)C_2H_5$ III (—) I (50) + III (20)	257
	2. HCl	\$1.00 (a)	20,
	H ₂ SO ₄	I (50) + III (20)	
$O_2N(CH_2)_4NO_2$			258
021.(0112)41.02	1. ZnCl ₂ , HCl	OHC(CH ₂) ₂ CHO (—)	258 183
	 ZnCl₂, HCl H₂O 	OHC(CH ₂) ₂ CHO (—)	183
CH ₃ CH=CHCH ₂ NO ₂	 ZnCl₂, HCl H₂O NaOH H₂SO₄ 	OHC(CH ₂) ₂ CHO (—) CH ₃ CH—CHCHO (68)	
CH ₃ CH=CHCH ₂ NO ₂	 ZnCl₂, HCl H₂O NaOH H₂SO₄ NaOH 	OHC(CH ₂) ₂ CHO (—)	183
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂	 ZnCl₂, HCl H₂O NaOH H₂SO₄ NaOH H₂SO₄ 	OHC(CH ₂) ₂ CHO (—) CH ₃ CH—CHCHO (68) OHCCH—CHCHO (58)	183 251 251
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂	 ZnCl₂, HCl H₂O NaOH H₂SO₄ NaOH H₂SO₄ NaOH NaOCH₃ 	OHC(CH ₂) ₂ CHO (—) CH ₃ CH—CHCHO (68)	183 251
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂	 ZnCl₂, HCl H₂O NaOH H₂SO₄ NaOH H₂SO₄ 	OHC(CH ₂) ₂ CHO (—) CH ₃ CH—CHCHO (68) OHCCH—CHCHO (58)	183 251 251
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂	1. ZnCl ₂ , HCl 2. H ₂ O 1. NaOH 2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. NaOCH ₃ 2. O ₃ , DMS 1. NaOCH ₃ 2. H ₂ SO ₄ , CH ₃ OH	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44) CH ₃ O ₂ C(CH ₂) ₂ CH(OCH ₃) ₂ (84)	183 251 251 252 258
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂	1. ZnCl ₂ , HCl 2. H ₂ O 1. NaOH 2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. NaOCH ₃ 2. O ₃ , DMS 1. NaOCH ₃ 2. H ₂ SO ₄ , CH ₃ OH 1. CH ₃ CH=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ ri) ₄	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44)	183 251 251 252 258
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂	1. ZnCl ₂ , HCl 2. H ₂ O 1. NaOH 2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. NaOCH ₃ 2. O ₃ , DMS 1. NaOCH ₃ 2. H ₂ SO ₄ , CH ₃ OH 1. CH ₃ CH=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ ri) ₄ 2. H ₂ O ₃ , heat	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44) CH ₃ O ₂ C(CH ₂) ₂ CH(OCH ₃) ₂ (84) C ₂ H ₃ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (63)	183 251 251 252 258 165,
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂	1. ZnCl ₂ , HCl 2. H ₂ O 1. NaOH 2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. NaOCH ₃ 2. O ₃ , DMS 1. NaOCH ₃ 2. H ₂ SO ₄ , CH ₃ OH 1. CH ₃ CH=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ ri) ₄	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44) CH ₃ O ₂ C(CH ₂) ₂ CH(OCH ₃) ₂ (84)	183 251 251 252 258 165,
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂	1. ZnCl₂, HCl 2. H₂O 1. NaOH 2. H₂SO₄ 1. NaOH 2. H₂SO₄ 1. NaOCH₃ 2. O₃, DMS 1. NaOCH₃ 2. H₂SO₄, CH₃OH 1. CH₃CH=C(OTMS)OCH₃, TiCl₄, Ti(OC₃H-ri)₄ 2. H₂O, heat 1. (CH₃)₂C=C(OTMS)OCH₃, TiCl₄, Ti(OC₃H-ri)₄ 2. H₂O, heat	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44) CH ₃ O ₂ C(CH ₂) ₂ CH(OCH ₃) ₂ (84) C ₂ H ₃ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (63) C ₂ H ₃ COCH ₂ C(CH ₃) ₂ CO ₂ CH ₃ (68)	183 251 251 252 258 165,
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂	1. ZnCl ₂ , HCl 2. H ₂ O 1. NaOH 2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. NaOCH ₃ 2. O ₃ , DMS 1. NaOCH ₃ 2. H ₂ SO ₄ , CH ₃ OH 1. CH ₃ CH=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ rl) ₄ 2. H ₂ O, heat 1. (CH ₃) ₂ C=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ rl) ₄ 2. H ₂ O, heat 1. n-C ₄ H ₂ CH(Li)CO ₂ Li, -100°	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44) CH ₃ O ₂ C(CH ₂) ₂ CH(OCH ₃) ₂ (84) C ₂ H ₃ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (63)	183 251 251 252 258 165,
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂	1. ZnCl₂, HCl 2. H₂O 1. NaOH 2. H₂SO₄ 1. NaOH 2. H₂SO₄ 1. NaOCH₃ 2. O₃, DMS 1. NaOCH₃ 2. H₂SO₄, CH₃OH 1. CH₃CH=C(OTMS)OCH₃, TiCl₄, Ti(OC₃H-ri)₄ 2. H₂O, heat 1. (CH₃)₂C=C(OTMS)OCH₃, TiCl₄, Ti(OC₃H-ri)₄ 2. H₂O, heat 1. n-C₄H₀CH(Li)CO₂Li, −100° 2. dil HCl	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44) CH ₃ O ₂ C(CH ₂) ₂ CH(OCH ₃) ₂ (84) C ₂ H ₃ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (63) C ₂ H ₃ COCH ₂ C(CH ₃) ₂ CO ₂ CH ₃ (68) C ₂ H ₃ COCH ₂ CH(C ₄ H ₉ -n)CO ₂ H (55)	183 251 251 252 258 165, 167,
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂	1. ZnCl ₂ , HCl 2. H ₂ O 1. NaOH 2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. NaOCH ₃ 2. O ₃ , DMS 1. NaOCH ₃ 2. H ₂ SO ₄ , CH ₃ OH 1. CH ₃ CH=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ rl) ₄ 2. H ₂ O, heat 1. (CH ₃) ₂ C=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ rl) ₄ 2. H ₂ O, heat 1. n-C ₄ H ₂ CH(Li)CO ₂ Li, -100°	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44) CH ₃ O ₂ C(CH ₂) ₂ CH(OCH ₃) ₂ (84) C ₂ H ₃ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (63) C ₂ H ₃ COCH ₂ C(CH ₃) ₂ CO ₂ CH ₃ (68)	183 251 251 252 258 165,
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂ CH ₂ =C(NO ₂)C ₂ H ₅	1. ZnCl ₂ , HCl 2. H ₂ O 1. NaOH 2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. NaOCH ₃ 2. O ₃ , DMS 1. NaOCH ₃ 2. H ₂ SO ₄ , CH ₃ OH 1. CH ₃ CH=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ i) ₄ 2. H ₂ O, heat 1. (CH ₃) ₂ C=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ i) ₄ 2. H ₂ O, heat 1. n-C ₄ H ₂ CH(Li)CO ₂ Li, -100° 2. dil HCl 1. n-C ₄ H ₃ CH(Li)CO ₂ Li, -100° 2. dil HCl 3. CH ₂ N ₂	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44) CH ₃ O ₂ C(CH ₂) ₂ CH(OCH ₃) ₂ (84) C ₂ H ₃ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (63) C ₂ H ₃ COCH ₂ C(CH ₃) ₂ CO ₂ CH ₃ (68) C ₂ H ₃ COCH ₂ CH(C ₄ H ₉ -n)CO ₂ H (55) C ₂ H ₃ COCH ₂ CH(C ₄ H ₉ -n)CO ₂ CH ₃ (55)	183 251 251 252 258 165, 167, 37 254
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂	1. ZnCl ₂ , HCl 2. H ₂ O 1. NaOH 2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. NaOCH ₃ 2. O ₃ , DMS 1. NaOCH ₃ 2. H ₂ SO ₄ , CH ₃ OH 1. CH ₃ CH=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ i) ₄ 2. H ₂ O, heat 1. (CH ₃) ₂ C=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ i) ₄ 2. H ₂ O, heat 1. n-C ₄ H ₂ CH(Li)CO ₂ Li, -100° 2. dil HCl 1. n-C ₄ H ₃ CH(Li)CO ₂ Li, -100° 2. dil HCl 3. CH ₂ N ₂ 1. n-C ₃ H ₇ C(CH ₃)(Li)CO ₂ Li, -100°	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44) CH ₃ O ₂ C(CH ₂) ₂ CH(OCH ₃) ₂ (84) C ₂ H ₃ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (63) C ₂ H ₃ COCH ₂ C(CH ₃) ₂ CO ₂ CH ₃ (68) C ₂ H ₃ COCH ₂ CH(C ₄ H ₉ -n)CO ₂ H (55)	183 251 251 252 258 165, 167,
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂	1. ZnCl₂, HCl 2. H₂O 1. NaOH 2. H₂SO₄ 1. NaOH 2. H₂SO₄ 1. NaOCH₃ 2. O₃, DMS 1. NaOCH₃ 2. H₂SO₄, CH₃OH 1. CH₃CH=C(OTMS)OCH₃, TiCl₄, Ti(OC₃H-ri)₄ 2. H₂O, heat 1. (CH₃)₂C=C(OTMS)OCH₃, TiCl₄, Ti(OC₃H-ri)₄ 2. H₂O, heat 1. n-C₄H₀CH(Li)CO₂Li, −100° 2. dil HCl 1. n-C₄H₀CH(Li)CO₂Li, −100° 2. dil HCl 3. CH₂N₂ 1. n-C₃H₁C(CH₃)(Li)CO₂Li, −100° 2. dil HCl 3. CH₂N₂ 1. n-C₃H₁C(CH₃)(Li)CO₂Li, −100° 2. dil HCl	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44) CH ₃ O ₂ C(CH ₂) ₂ CH(OCH ₃) ₂ (84) C ₂ H ₃ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (63) C ₂ H ₃ COCH ₂ C(CH ₃) ₂ CO ₂ CH ₃ (68) C ₂ H ₃ COCH ₂ CH(C ₄ H ₉ -n)CO ₂ H (55) C ₂ H ₃ COCH ₂ CH(C ₄ H ₉ -n)CO ₂ CH ₃ (55) C ₂ H ₃ COCH ₂ CH(C ₄ H ₉ -n)CO ₂ CH ₃ (55)	183 251 251 252 258 165, 167, 37 254
CH ₃ CH=CHCH ₂ NO ₂ O ₂ NCH ₂ CH=CHCH ₂ NO ₂ (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CH ₂ NO ₂ CH ₃ O ₂ C(CH ₂) ₃ NO ₂	1. ZnCl ₂ , HCl 2. H ₂ O 1. NaOH 2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. NaOCH ₃ 2. O ₃ , DMS 1. NaOCH ₃ 2. H ₂ SO ₄ , CH ₃ OH 1. CH ₃ CH=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ i) ₄ 2. H ₂ O, heat 1. (CH ₃) ₂ C=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ i) ₄ 2. H ₂ O, heat 1. n-C ₄ H ₂ CH(Li)CO ₂ Li, -100° 2. dil HCl 1. n-C ₄ H ₃ CH(Li)CO ₂ Li, -100° 2. dil HCl 3. CH ₂ N ₂ 1. n-C ₃ H ₇ C(CH ₃)(Li)CO ₂ Li, -100°	OHC(CH ₂) ₂ CHO (—) CH ₃ CH=CHCHO (68) OHCCH=CHCHO (58) (CH ₃ O) ₂ P(O)CH(C ₂ H ₃)CHO (44) CH ₃ O ₂ C(CH ₂) ₂ CH(OCH ₃) ₂ (84) C ₂ H ₃ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (63) C ₂ H ₃ COCH ₂ C(CH ₃) ₂ CO ₂ CH ₃ (68) C ₂ H ₃ COCH ₂ CH(C ₄ H ₉ -n)CO ₂ H (55) C ₂ H ₃ COCH ₂ CH(C ₄ H ₉ -n)CO ₂ CH ₃ (55)	183 251 251 252 258 165, 167, 37 254

2	Ì	5
•		1

	TABLE I. NEF REACTION OF NITRO COMP	POUNDS (Continued)	
Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
	1. OSi(CH ₃) ₃ , TiCl ₄	$CH_2COC_2H_5$ (76)	164, 168
	2. H ₂ O 1. OSi(CH ₃) ₃ , SnCl ₄	$CH_{2}COC_{2}H_{5}$ (62)	167
	2. H ₂ O 1. OSi(CH ₃) ₃ , SnCl ₄	$ \begin{array}{c} O \\ CH_2COC_2H_5 \end{array} $ (41)	164, 168
	 H₂O n-C₄H₉CH(Li)CO₂CH₃ HCl 	$C_2H_5COCH_2CH(CO_2CH_3)C_4H_9-n$ (56)	37
	1. OSi(CH ₃) ₃ , TiCl ₄	O (62-82) CH ₂ COC ₂ H ₅	164, 167
	2. H ₂ O, heat 1. OSi(CH ₃) ₃ , SnCl ₄	" (82)	167, 168
	2. H ₂ O, heat O, KF	O (96) CH ₂ COC ₂ H ₅	168
	1. C ₄ H ₃ CH(Li)CO ₂ Li 2. HCl	C ₂ H ₃ COCH ₂ CH(C ₆ H ₃)CO ₂ H (73)	37
	1. C₀H₃CH(Li)CO₂Li 2. HCl	C ₂ H ₅ COCH ₂ CH(C ₆ H ₅)CO ₂ CH ₃ (73)	254
	3. CH₂N₂ 1. C₅H₅SCH(Li)CO₂Li 2. HCl	C ₂ H ₃ COCH ₂ CH(SC ₆ H ₅)CO ₂ H (76)	37
	 C₀H₀SCH(Li)CO₂Li HCl 	C ₂ H ₅ COCH ₂ CH(SC ₆ H ₅)CO ₂ CH ₃ (76)	254
	3. CH ₂ N ₂ 1.	CO ₂ CH ₃ (41) CH ₂ COC ₂ H ₅	37
	2. HCl 1. C(OCH ₃)OSi(CH ₃) ₃ , TiCl ₄ , Ti(OC ₃ H ₇ -i) ₄	" (78)	167
	2. H ₂ O, heat 1. C ₆ H ₅ CH(Li)CO ₂ CH ₃	C ₂ H ₅ COCH ₂ CH(C ₆ H ₅)CO ₂ CH ₃ (75)	37
	 HCl C₆H₅CH—C(OCH₃)OTMS, TiCl₄, Ti(OC₃H₇-i)₄ 	" (74)	167
	2. H ₂ O, heat 1. C ₆ H ₅ SCH(Li)CO ₂ CH ₃	C ₂ H ₅ COCH ₂ CH(SC ₆ H ₅)CO ₂ CH ₃ (66)	37
	2. HCl 1. C ₄ H ₅ SC(Li)(CH ₅)CO ₂ Li	$C_2H_5COCH_2C(CH_3)(SC_6H_5)CO_2H$ (39)	37
	2. HCl 1. C ₆ H ₅ SC(Li)(CH ₃)CO ₂ Li 2. HCl 3. CH ₂ N ₂	$C_2H_5COCH_2C(CH_3)(SC_6H_5)CO_2CH_3$ (39)	254
	1. n-C ₈ H ₁₇ CH(Li)CO ₂ CH ₃ 2. HCl	$C_2H_5COCH_2CH(CO_2CH_3)C_8H_{17}-n$ (53)	37
	1. n-C ₈ H ₁₇ CH=C(OTMS)OCH ₃ , TiCl ₄ , Ti(OC ₃ H ₇ -i) ₄ 2. H ₂ O, heat	" (81)	167

3. HCl, rt

708

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
	1. C ₆ H ₃ CH ₃ , TiCl ₄ 2. H ₃ O+	O (90) C ₆ H ₄ CH ₃ -4	261
	1. O ,TiCl4	(76)	261
	2. H ₃ O+		
CH(NO ₂)CH ₃	1. NaOH	COCH ₃ (64-D)	10
	2. HCl 1. KOH, MgSO ₄ 2. KMnO ₄	" (77-D)	124
CH ₂ NO ₂	 KOH, MgSO₄ KMnO₄ 	(91-D)	124
n-C ₅ H ₁₁ NO ₂	1. H ₂ O ₂ 2. K ₂ CO ₃ , H ₂ O 3. HCl	n-C₄H ₉ CHO (81)	147
	1. O , Al ₂ O ₃	O (55)	245
		COC ₄ H ₉ -n	
	2. H ₂ O ₂ , K ₂ CO ₃ 1. CH ₂ =CHCOC ₂ H ₅ , Al ₂ O ₃ 2. H ₂ O ₂ , K ₂ CO ₃	n-C ₄ H ₉ CO(CH ₂) ₂ COC ₂ H ₅ (90)	245
n-C ₅ H ₁₁ NO ₂	$CH_2=C(CH_3)CO_2CH_3$, CH_3CN , $C_6H_5N=NC_6H_5$, e^-	n-C ₄ H ₉ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (62)	194
$C_2H_5CH=C(NO_2)CH_3$	1. (n-C ₄ H ₉) ₃ SnH 2. MCPBA	$C_2H_3COCH_3$ (72)	228a
i-C ₃ H ₇ CH(NO ₂)CH ₃	1. KOH, MgSO ₄	<i>i</i> -C ₃ H ₇ COCH ₃ (94-D)	124
t-C ₄ H ₂ CH ₂ NO ₂ HO(CH ₂) ₃ CH(NO ₂)CH ₃	2. KMnO ₄ "1. NaOH	t-C ₄ H ₉ CHO (63–69-D) HO(CH ₂) ₃ COCH ₃ (37-D)	124 35
CH ₃ CH(NO ₂)(CH ₂) ₂ CO ₂ H	2. H ₂ SO ₄ 1. NaOH or Py	CH ₃ CO(CH ₂) ₂ CO ₂ H (—)	87
CH ₃ CH(NO ₂)CO ₂ C ₂ H ₅	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. MoO ₅ ·Py·HMPA	CH3COCO2C2H5 (73)	145
CH ₃ CH(NO ₂)(CH ₂) ₂ CN	TiCl ₃ , H ₂ O 1. NaOH	CH ₃ CO(CH ₂) ₂ CN (55) " (90)	154 156
O ₂ N(CH ₂) ₅ NO ₂	2. TiCl ₃ , NH ₄ OAc, H ₂ O 1. ZnCl ₂ , HCl	OHC(CH ₂) ₃ CHO (—)	183
CH ₃ CO(CH ₂) ₃ NO ₂	2. H ₂ O 1. (C ₂ H ₅) ₃ N 2. n-C ₁₆ H ₃₃ N(CH ₃) ₃ †MnO ₄	CH ₃ CO(CH ₂) ₂ CHO (57)	262
CH ₃ CH(NO ₂)(CH ₂) ₂ CO ₂ C ₂ H ₅	1. NaOH 2. HCl	CH ₃ CO(CH ₂) ₂ CO ₂ H (40)	263
	 KOAc, CH₃OH, e⁻ H₃O⁺ 	CH ₃ CO(CH ₂) ₂ CHO (54)	195
<u></u>		6 <u>c</u> 6	
AcOCH ₂ CH=C(CH ₃)CH ₂ NO ₂	Silica gel, NaOCH ₃ 1. Fe, HOAc 2. CH ₂ O, H ⁺	$A_{cOCH_{2}CH}$ CH $=$ C(CH ₃)CHO (40)	200 185
CH ₃ O ₂ CCH ₂ CH(CH ₃)CH ₂ NO ₂	 NaOCH₃, CH₃OH 	CH ₃ O ₂ CCH ₂ CH(CH ₃)CH(OCH ₃) ₂ (86)	258
$(CH_3O)_2P(O)CH(CH_2NO_2)C_3H_7-i$	2. H ₂ SO ₄ , CH ₃ OH 1. NaOCH ₃ 2. O ₃ , DMS	(CH3O)2P(O)CH(CHO)C3H7-i (35)	252
$(C_6H_5)_2P(O)CH(CH_2NO_2)C_3H_7-i$	1. NaOCH ₃ 2. O ₃ , DMS	$(C_6H_5)_2P(O)CH(CHO)C_3H_7-i$ (90)	255
	1. NaOCH ₃ , CH ₃ OH 2. Rose Bengal, O ₂ , hv	" (91)	256
	2. 1.000 Dongan, 02, nr		

٠	٠	L	1	
ľ		7	•	
۰	-	-	•	
t	4	٠	3	
۰	•	•	•	

	TABLE I. NEF REACTION OF NITRO CO	OMPOUNDS (Continued)	
Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
$(C_6H_5)_2P(O)CH(CH_2NO_2)C_3H_7-n$	1. NaOCH ₃	$(C_6H_5)_2P(O)CH(CHO)C_3H_{7}-n$ (97)	256
CH2NO2	 Rose Bengal, O₂, hν NaOH 	CHO (23-A)	264
CH ₂	2. H ₂ SO ₄	CH ₂	201
H—OAc		н—он	
H—OAc		н—он	
CH ₂ OAc		CH₂OH	
CH ₂ NO ₂	1. NaOH	CHO (70-B)	264
AcO H	2. H ₂ SO ₄	но—н	
H—OAc		н—он	
H—OAc		н—он	
CH ₂ OAc		CH ₂ OH	
CH2NO2	1. NaOH	СНО (72-В)	264
H—OAc	2. H ₂ SO ₄	н—-он	
H—OAc		н——он	
H—OAc		н——он	
ĊH₂OAc		ĊH₂OH	
CH ₂ NO ₂	1. NaOH	CHO (60-B)	265a
CH ₂	2. H ₂ SO ₄ 3. (C ₆ H ₅ CH ₂ N(C ₆ H ₅)NH ₂)	ĊH ₂	
H—OAc	3. (Chrischian (Chris)1112)	H—OAc	
H—OAc		H——OAc	
ĊH ₂ OAc		ĊH ₂ OAc	
C ₆			
NO ₂	1. NaOH	O (97-D)	10
	2. HCl	l J	
	1. OH- 2. H* 1. OH- 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂ 1. LDA 2. MoO ₅ ·Py·HMPA 1. (C ₂ H ₃) ₃ N 2. MoO ₅ ·Py·HMPA NaOH, Na ₂ S ₂ O ₈ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH 1. H ₂ O ₂ 2. K ₂ CO ₃ , H ₂ O 3. HCl 1. (C ₂ H ₃) ₃ N 2. CAN 1. TMSCl, Li ₂ S 2. CAN (n-C ₄ H ₉) ₄ N+Br-, CH ₃ CN, O ₂ , e-NaNO ₂ , n-C ₃ H ₇ ONO, DMSO Silica gel, NaOCH ₃ 1. (C ₂ H ₃) ₃ N 2. C ₁₆ H ₃ ₃ N(CH ₃) ₃ †MnO ₄ 1. NaOH	" (85-90) " (100) " (93) " (86) " (86) " (81) " (66-D) " (53) " (88) " (80) " (92) " (70) " (67) " (99) " (80) " (66) + NOH (23)	16 116 131 144 145 145 146 170 147 148 148 194 197 200 261
	2. H ₂ SO ₄ , Na ₂ SO ₄ DBU, TMSCI, MCPBA	" (96)	143b
NO ₂	(C₂H₅)₃N, CAN	(80)	148

1
•
n

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
	1. TMSCl, Li ₂ S	" (90)	148
NO ₂	2. CAN 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄	" (81)	224
	1. C ₂ H ₅ OH, SnCl ₂ 2. H ⁺	O (79)	221
	 CH₃CH(Li)CO₂Li, −100° dil HCl 	OC ₂ H ₅ CH(CO ₂ H)CH ₃ (43)	37
	 CH₃CH=C(OTMS)OCH₃, TiCl₄, Ti(OC₃H₇i)₄ H₂O, heat 	O (70)	165, 167 168
	1. C ₂ H ₃ CH(Li)CO ₂ Li 2. HCl	CH(CH ₃)CO ₂ CH ₃ (43)	168
	 (CH₃)₂C=C(OTMS)OCH₃, TiCl₄, Ti(OC₃H₇i)₄ H₂O, heat 	CH(C ₂ H ₃)CO ₂ H O (25)	165, 167 168
	1. n-C ₄ H ₉ CH(Li)CO ₂ Li 2. HCl	C(CH ₃) ₂ CO ₂ CH ₃ (24)	37
	1. n-C₄H₀CH(Li)CO₂Li 2. HCl 3. CH₂N₂	$CH(CO_2H)C_4H_9-n$ O $CH(CO_2CH_3)C_4H_9-n$ (24)	254
	1. n-C ₄ H ₉ CH(Li)CO ₂ CH ₃	" (54)	37, 168
	2. HCl 1. C₅H₃CH(Li)CO₂Li 2. HCl	O (72)	37, 168
	1. C ₆ H ₃ CH(Li)CO ₂ Li 2. HCl 3. CH ₂ N ₂	$CH(C_6H_5)CO_2H$ O $CH(C_6H_5)CO_2CH_3$ O	254
	1. C ₆ H ₃ CH(Li)CO ₂ CH ₃ 2. HCl	O (61) CH(C ₆ H ₅)CO ₂ CH ₃	37, 168
	 C₆H₅SCH(Li)CO₂Li HCl 	$CH(SC_6H_5)CO_2H$ (72)	37, 168
	1. C ₆ H ₅ SCH(Li)CO ₂ Li 2. HCl 3. CH ₂ N ₂	O (76) CH(C ₆ H ₅)CO ₂ CH ₅	254
	1. C ₆ H ₅ SCH(Li)CO ₂ CH ₃	" (52)	37, 168
	2. HCl 1. C ₆ H ₃ SC(Li)(CH ₃)CO ₂ Li 2. HCl	O (37)	37, 168
	 C₆H₅SC(Li)(CH₅)CO₂Li HCl CH₂N₂ 	$C(CH_3)(SC_6H_5)CO_2H$ $C(CH_3)(SC_6H_5)CO_2CH_3$ (37)	254
	1. (C ₂ H ₅) ₃ Al 2. (C ₂ H ₅) ₂ O 3. HCl, 0°	O (16–21)	259

	TABLE I. NEF REACTION OF NITRO		1
Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
*	1. (C ₂ H ₅) ₃ Al 2. (C ₂ H ₅) ₂ O 3. HCl, rt	O (83-86) + NO ₂ (4-6)	259
	1. (<i>i</i> -C₄H₂)₃Al 2. (C₂H₅)₂O 3. HCl, 0°	$C_{2}H_{5}$ $C_{4}H_{9}-i$ $C_{4}H$	259
	1. (C ₆ H ₅) ₃ Al 2. (C ₂ H ₅) ₂ O 3. HCl, 0°	C_4H_9-i C_6H_5 $+ NO_2 (87)$	259
	1. (<i>i</i> -C ₄ H ₉) ₃ Al 2. (C ₂ H ₅) ₂ O 3. HCl, rt	$C_{6}H_{5}$ O (82) $+ NO_{2}$ (5)	259
	1. C ₆ H ₅ CH ₃ , TiCl ₄ 2. H ₃ O+	C ₄ H ₉ - <i>i</i> (94)	260
	1. C₀H₅C₄H₅⁻t, TiCl₄ 2. H₃O⁺	$C_6H_4(C_4H_9-t)-4$ (86)	260
	1. C ₆ H ₅ OCH ₃ , TiCl ₄ 2. H ₃ O+	O C ₆ H ₄ OCH ₃ -4 (90)	260
	1. O, TiCL	(72)	260
CY°	2. H ₃ O+ H ₂ O ₂ , K ₂ CO ₃ , CH ₃ OH	HO ₂ C(CH ₂) ₄ CO ₂ H (86)	266a
NO ₂	 NaOH, C₂H₅OH H₂SO₄, H₂O, C₅H₁₂ 	(47) CH ₂ CHO	267
O (CH ₂) ₂ NO ₂	1. OH ⁻ 2. H ⁺	(80)	268
NO ₂ NHAc NO ₂	1. KOH, MgSO ₄ 2. KMnO ₄	NHAc (70)	269
n-C ₄ H ₉ CH(NO ₂)CH ₃	1. H ₂ O ₂ 2. K ₂ CO ₃ , H ₂ O	n-C ₄ H ₉ COCH ₃ (82)	147
t-C ₄ H ₉ CH(NO ₂)CH ₃	3. HCl 1. KOH, MgSO ₄ 2. KMnO ₄	t-C ₄ H ₉ COCH ₃ (66-D)	124

	TABLE I. NEF REACTION OF NITRO CO	OMPOUNDS (Continued)	
Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
CH ₃ CH(NO ₂)(CH ₂) ₂ CH=CH ₂	 NaOH, CH₃OH Rose Bengal, O₂, hν 	$CH_3CO(CH_2)_2CH=CH_2$ (66)	140
×,		∞ ∕•	
CH=CHNO ₂	1. H ₂ O ₂ , NaHCO ₃	СНГСНО (79)	235a
×°	2. KHF ₂ , HO(CH ₂) ₂ OH, heat	×°	
		\sim	
	 H₂O₂, NaHCO₃ KH¹⁸F₂, heat 	CH18FCHO (—)	235b
(CH ₂) ₂ C(NO ₂)=CH ₂	1. (<i>i</i> -C₄H₀)₃Al	CH ₃ CO(CH ₂) ₂ COC ₅ H ₁₁ -i (91)	270
X	2. HCl		
_	 (C₀H₅)₃Al HCl 	CH3CO(CH2)2COCH2C6H5 (93)	270
NO ₂	$(i-C_4H_9)_2$ AlCH=CHC $_4H_9$ - n 1. $(i-C_4H_9)_3$ Al	$CH_3CO(CH_2)_2COCH = CHC_4H_9-n$ (96) $i-C_4H_9$, O (85)	270 259
$\langle \rangle$	2. NaOH, H₂O 3. C₀H₁₄	\prec	
o y o	4. KMnO ₄ 5. NaHSO ₃	0 0	
		+ i-C ₄ H ₉ NO ₂ (4)	
		I	
$CH_2 = C(NO_2)C_4H_9-n$	1. C₀H₅CH₃, TiCl₄ 2. H₃O⁺	$n-C_4H_9COCH_2C_6H_4CH_3-4$ (62)	260
1-C ₆ H ₁₃ NO ₂	1. H ₂ O ₂ 2. K ₂ CO ₃ , H ₂ O 3. HCl	$n-C_3H_{11}CHO$ (80)	147
	TiCl ₃ , NH ₄ OAc, H ₂ O 1. NaOCH ₃	" (45) " (45)	154 156
	2. TiCl ₃ , NH ₄ OAc, H ₂ O 1. CH ₂ =CHCOCH ₃ , Al ₂ O ₃	C ₃ H ₁₁ CO(CH ₂) ₂ COCH ₃ (71)	245
	2. H ₂ O ₂ , K ₂ CO ₃ 1. O , Al ₂ O ₃	O (58)	245
	\wedge		
	2. H ₂ O ₂ , K ₂ CO ₃	COC ₅ H ₁₁ -n	
	1. CH ₂ =CHCOC ₂ H ₅ , Al ₂ O ₃ 2. H ₂ O ₂ , K ₂ CO ₃	$n-C_5H_{11}CO(CH_2)_2COC_2H_5$ (78)	245
CH ₃ CO(CH ₂) ₂ CH(NO ₂)CH ₃	(n-C ₄ H ₉) ₄ N ⁺ Br ⁻ , CH ₃ CN, O ₂ , e ⁻ Silica gel, NaOCH ₃	CH ₃ CO(CH ₂) ₂ COCH ₃ (82–86) " (55–81)	194 202, 203
	Silica gel, KMnO ₄ 1. (C ₂ H ₅) ₃ N	" (82) " (65)	202 261
CH ₃ CH(NO ₂)(CH ₂) ₂ CO ₂ CH ₃	2. C ₁₆ H ₃₃ N(CH ₃) ₃ †MnO ₄ ⁺ TiCl ₃ , H ₂ O	CH ₃ CO(CH ₂) ₂ CO ₂ H (40)	154
i-C ₃ H ₂ CHOHCH(NO ₂)CH ₃	TiCl ₃ , NH ₄ OAc, H ₂ O H ₂ SO ₄	CH ₃ CO(CH ₂) ₂ CO ₂ CH ₃ (35) i-C ₃ H ₂ CHOHCOCH ₃ I (50) +	154 257
	1. OH-	$i-C_3H_7CH==C(NO_2)CH_3$ II (10) I (50) + II (10)	257
CH ₃ CH(NO ₂)(CH ₂) ₂ CHOHCH ₃	2. HCl 1. (C ₂ H ₅) ₃ N	CH ₃ CO(CH ₂) ₂ CHOHCH ₃ (62)	261
CH ₃ COCH=CHCH(NO ₂)CH ₃	 C₁₆H₃₃N(CH₃)₃⁺MnO₄⁻ KOH 	CH ₃ COCH=CHCOCH ₃ (80)	151
2	2. (CH ₃ O) ₂ SO ₂ , heat		

TABLE I. NEF REACTION OF NITRO COMPOUNDS (Continued)

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Re
CH ₃ COCH=CHC(CH ₃)=NO ₂ Na	Silica gel, CH ₃ OH	" (36)	152
$OHCC(CH_3) = CHC(CH_3) = NO_2Na$	Silica gel, CH ₃ OH	OHCC(CH ₃)=CHCOCH ₃ (38)	152
$C_2H_5O_2C)_2C = CHC(CH_3) = NO_2Na$	Silica gel, CH ₃ OH	$(C_2H_5O_2C)_2C$ =CHCOCH ₃ (23)	152
$n-C_4H_9CH(NO_2)CO_2C_4H_9-n$	CH ₃ OH, LiClO ₄ , e ⁻	$n-C_4H_9COCO_2C_4H_9-n$ (76)	193
O ₂ N(CH ₂) ₆ NO ₂	ZnCl ₂ , HCl, H ₂ O	OHC(CH ₂) ₄ CHO (—)	183
CH ₃ CH(NO ₂)CH(CH ₃)CH ₂ CO ₂ CH ₃	1. NaOH 2. HCl	CH ₃ COCH(CH ₃)CH ₂ CO ₂ H (55)	262
C ₂ H ₅ CH(NO ₂)(CH ₂) ₂ CO ₂ CH ₃	KOC ₄ H ₉ -t, t-C ₄ H ₉ O ₂ H, Mo(CO) ₆	$C_2H_5CO(CH_2)_2CO_2CH_3$ (20)	144
	1. NaOH 2. H ⁺	$C_2H_5CO(CH_2)_2CO_2H$ (65)	271
CH ₃ CH(NO ₂)CH ₂ CH(CH ₃)CO ₂ CH ₃	(n-C ₄ H ₉) ₄ N+Br-, CH ₃ CN, O ₂ , e-	CH ₃ COCH ₂ CH(CH ₃)CO ₂ CH ₃ (76)	194
	1. NaOH 2. HCl	CH ₃ COCH ₂ CH(CH ₃)CO ₂ H (53)	262
	(n-C ₄ H ₉) ₄ N ⁺ Br ⁻ , CH ₃ CN, O ₂ , e ⁻	(71)	194
ó <u>,</u> ò		0.0	
CH ₃ CH(NO ₂)(CH ₂) ₂ C		CH ₃ CO(CH ₂) ₂ C	
0	1. KOAc, CH₃OH, e-	$C_2H_3CO(CH_2)_2CHO$ (75)	194
C ₂ H ₅ CH(NO ₂)(CH ₂) ₂ CH(2. H ₃ O+	C ₂ H ₃ CO(CH ₂) ₂ CHO (73)	194
O_ C2H3CH(NO2)(CH2)2CO2C2H3	1. NaOH	C ₂ H ₅ CO(CH ₂) ₂ CO ₂ C ₂ H ₅ (74)	272
02113011(1102)(0112)200202113	2. H ₂ SO ₄	C2113CO(C112)2CO2C2113 (74)	212
CH2NO2	1. NaOH	(84)	42
AcNH—H	2. H ₂ SO ₄	AcO—H	
но—н	3. Ac ₂ O, Py	AcNH—H	
	5 408 M	AcO—H	
н—он			
н—он		H—OAc	
ĊH₂OH		н—о	
		ĊH₂OAc	
	1. NaOH 2. HCl, heat	CHO (93) H ₂ N — H HO — H H — OH	273

		н—он	
		H—OH CH₂OH	
	1 Ra(OH)		274
	1. Ba(OH) ₂ 2. H ₂ SO ₄	С́Н₂ОН СНО (66)	274
	1. Ba(OH) ₂ 2. H ₂ SO ₄	CH ₂ OH CHO (66) AcNH—H	274
		CH ₂ OH CHO (66) AcNH—H HO—H	274
		CH ₂ OH CHO (66) AcNH—H HO—H H—OH	274
		CH ₂ OH CHO (66) AcNH—H HO—H H—OH H—OH	274
	2. H ₂ SO ₄	CH ₂ OH CHO (66) AcNH—H HO—H H—OH H—OH CH ₂ OH	
ÇH₂NO₂	2. H ₂ SO ₄	CH ₂ OH CHO (66) AcNH—H HO—H H—OH H—OH CH ₂ OH CHO (23-P)	
	2. H ₂ SO ₄	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH	
н—он	2. H ₂ SO ₄	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH H—OH	
H—OH	2. H ₂ SO ₄	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH	
H—— OH H—— OH	2. H ₂ SO ₄	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH H—OH	
HO—H HO—H	2. H ₂ SO ₄	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH HO—H HO—H	
H—— OH H—— OH	2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH HO—H HO—H CH ₂ OH	
н— он но— н но— н	2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH HO—H HO—H CH ₂ OH	275,
H——OH H——OH HO——H HO——H CH ₂ OH	2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. OH ⁻ 2. H ⁺	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH HO—H HO—H CH ₂ OH " (81-P)	275, 276
H—OH H—OH HO—H HO—H CH ₂ OH	2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. OH ⁻ 2. H ⁺ 1. NaOH	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH HO—H HO—H CH ₂ OH " (81-P) CHO (58)	275, 276
H—OH HO—H HO—H CH ₂ OH CH ₂ NO ₂ HO—H	2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. OH ⁻ 2. H ⁺	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH HO—H HO—H CH ₂ OH " (81-P) CHO (58) HO—H	275, 276
H—OH H—OH HO—H HO—H CH ₂ OH	2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. OH ⁻ 2. H ⁺ 1. NaOH	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH HO—H HO—H CH ₂ OH " (81-P) CHO (58) HO—H H—OH	275, 276
H—OH H—OH HO—H HO—H CH ₂ OH	2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. OH ⁻ 2. H ⁺ 1. NaOH	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH HO—H HO—H CH ₂ OH " (81-P) CHO (58) HO—H HO—H HO—H	275, 276
H—OH H—OH HO—H HO—H CH ₂ OH CH ₂ NO ₂ HO—H H—OH HO—H	2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. OH ⁻ 2. H ⁺ 1. NaOH	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH HO—H HO—H CH ₂ OH " (81-P) CHO (58) HO—H HO—H HO—H HO—H	275, · 276
H—OH H—OH HO—H CH ₂ OH CH ₂ NO ₂ HO—H H—OH HO—H	1. NaOH 2. H ₂ SO ₄ 1. OH ⁻ 2. H ⁺ 1. NaOH 2. H ₂ SO ₄	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH HO—H HO—H CH ₂ OH " (81-P) CHO (58) HO—H HO—H HO—H CH ₂ OH	275, 276 275,
H—OH H—OH HO—H HO—H CH ₂ OH CH ₂ NO ₂ HO—H H—OH HO—H	2. H ₂ SO ₄ 1. NaOH 2. H ₂ SO ₄ 1. OH ⁻ 2. H ⁺ 1. NaOH	CH ₂ OH CHO (66) AcNH—H HO—H H—OH CH ₂ OH CHO (23-P) H—OH HO—H HO—H CH ₂ OH " (81-P) CHO (58) HO—H HO—H HO—H HO—H	275,

723

Сн₂ОН

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Ref
\	1. NaOCH ₃ , CH ₃ OH	(56)	92
	2. TiCl ₃ , NH₄OAc		
NO ₂			
O CH(NO ₂)CH ₃	1. (CH₃)₂NH	O_COCH ₃ (65)	293
	2. HCl		
NO ₂	1. OH-	0 (75)	81
	2. HCl		-
C ₆ H ₅ CH ₂ NO ₂	1. KOH, MgSO ₄	`\$´ C₅H₃CHO (68, 97-D)	124
C\$13,C11211O2	2. KMnO ₄	C ₆ H ₃ CHO (06, 97-D)	124
	 KOH, CH₃OH KMnO₄, MgSO₄ 	" (83)	131
	1. NaOH, CH ₃ OH, Rose Bengal	" (49)	140
	2. O ₂ , hv	" (68)	
	 NaOCH₃, CH₃OH, −78° O₃, DMS 	" (68)	141
	TiCl ₃ , H ₂ O	" (80)	154
	1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ *MnO ₄ *	" (89)	261
	1. (C ₂ H ₅) ₃ N	$C_6H_5CO_2H$ (75)	145
4-BrC₀H₄CH₂NO₂	 MoO₅·Py·HMPA NaOC₄H₀-t 	4-BrC ₆ H ₄ CHO (90)	127
	2. KMnO₄		
$n-C_7H_{15}NO_2$	1. H ₂ O ₂ 2. K ₂ CO ₃ , H ₂ O	n-C ₆ H ₁₃ CHO (78)	148
	3. HCl		
	 (C₂H₅)₃N CAN 	" (67)	148
	 (C₂H₅)₃N C₁₆H₃₃N(CH₃)₅*MnO₄² CH₂=CHCOCH₃, Al₂O₃ H₂O₂, K₂CO₃ NaOH, heat 	" (71) O (60) C ₅ H ₁₁ -n	261 245
	J. Naori, near		
CH ₃ O ₂ C(CH ₂) ₆ NO ₂	 CH₂=CHCOCH₃, Al₂O₃ 	CH ₃ O ₂ C(CH ₂) ₅ CO(CH ₂) ₂ COCH ₃ (50)	245
$n-C_3H_7CH(NO_2)C_3H_7-n$	2. H ₂ O ₂ , K ₂ CO ₃ 1. HCl, DMF	n-C ₃ H ₇ COC ₃ H ₇ n (63)	170
" C3117C11(11O2)C3117 "	2. VCl ₂ , H ₂ O	0,21,000,21,11 (00)	
C ₂ H ₃ CH(NO ₂)(CH ₂) ₂ COCH ₃	3. NaOH 1. NaOH, CH ₃ OH	C ₂ H ₅ CO(CH ₂) ₂ COCH ₃ (60)	140
C2113C11(11O2)(C112)/2COC113	2. Rose Bengal, O2, hv	20 0	
	 NaOCH₃, CH₃OH, −78° O₃, DMS 	" (83)	141
	 KOC₄H₉-t 	" (60)	144
	2. t-C ₄ H ₉ O ₂ H, Mo(CO) ₆ TiCl ₃ , H ₂ O	" (85)	153, 1
	NaOCH ₃ , TiCl ₃ , NH ₄ OAc, H ₂ O	" (90)	156
	Silica gel, NaOCH ₃ Silica gel, KMnO ₄	" (84) " (80)	200 202, 2
	TiCl ₃ , NH ₄ OAc, H ₂ O	C_2H_5 N (20)	154
C ₂ H ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃	Silica gel, KMnO₄	C ₂ H ₂ CO(CH ₂) ₂ COCH ₃ (73)	202, 2
CH ₃ COCH ₂ CH(CH ₃)CH(NO ₂)CH ₃ CH ₃ COCH ₂ C(CH ₃) ₂ CH ₂ NO ₂	Silica gel, KMnO₄ 1. (C₂H₅)₃N	CH ₃ COCH ₂ CH(CH ₃)COCH ₃ (80) CH ₃ COCH ₂ C(CH ₃) ₂ CHO (62)	202, 2 261
	2. C ₁₆ H ₃₃ N(CH ₃) ₃ +MnO ₄		
i-C ₃ H ₇ CHOHCH(NO ₂)C ₂ H ₅	H ₂ SO ₄	i-C ₃ H ₇ CHOHCOC ₂ H ₅ I (40-50) + i-C ₃ H ₇ CH=C(NO ₂)C ₂ H ₅ II (10)	257
	1. OH-	I (40-50) + II (—)	256
	2. HCl		

TABLE I. NEF REACTION OF NITRO COMPOUNDS (Continued)

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
C_2H_4COCH =CHC(CH ₃)=NO ₂ Na O ₂ N(CH ₃) ₇ NO ₂	Silica gel, CH ₃ OH 1. ZnCl ₂ , HCl 2. H ₂ O	C ₂ H ₅ COCH=CHCOCH ₃ (38) OHC(CH ₃) ₅ CHO (20-30)	152 183
$C_2H_5CH(NO_2)CH_2CH(NO_2)C_2H_5$	1. (CH ₃) ₂ NH 2. HCl	C ₂ H ₅ COCH ₂ COC ₂ H ₅ (39)	293
$CH_3O_2C(CH_2)_6NO_2$	 NaOCH₃, CH₃OH H₂SO₄ 	CH ₃ O ₂ C(CH ₂),CHO (61)	294
CH ₃ O ₂ C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ CO ₂ CH ₃	" 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS	" (70) CH ₃ O ₂ C(CH ₂) ₂ CO(CH ₂) ₂ CO ₂ CH ₃ (88)	295 141
	1. NaOH 2. HCl	$HO_2C(CH_2)_2CO(CH_2)_2CO_2H$ (60)	263
o., o.,	1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂	O (82)	144
C ₂ H ₅ CH(NO ₂)(CH ₂) ₂ C	TiCl ₃ , NH ₄ OAc, H ₂ O 1. NaOCH ₃	C ₂ H ₅ CO(CH ₂) ₂ / (70) " (70) " (70)	154
	1. NaOCH ₃ 2. TiCl ₃ , NH ₄ OAc, H ₂ O TiCl ₃ , H ₂ O	C ₂ H ₃ CO(CH ₂) ₂ COCH ₃ (40)	156 154
n-C ₃ H ₇ CH(NO ₂)(CH ₂) ₂ CH	"	n-C ₃ H ₇ CO(CH ₂) ₂ CHO (80)	195
0	ir nuueno seumenno		
i-C ₃ H ₇ CH(NO ₂)(CH ₂) ₂ CH(O)	 KOAc, CH₃OH, e⁻ H₃O⁺ 	$i-C_3H_7CO(CH_2)_2CHO$ (84)	195
NO ₂	 CH₃CH=C(OTMS)OCH₃, TiCl₄, Ti(OC₃H₇-i)₄ 	O + (32) CH(CH ₃)CO ₂ CH ₃	165, 167
	2. H ₂ O, heat	OH (41)	
Co	.H ₂ O ₂ , K ₂ CO ₃ , CH ₃ OH	HO ₂ C(CH ₂) ₅ CO ₂ H (90)	266a
NO ₂ NO ₂	"	O (73) CH(CH ₃)CO ₂ CH ₃	168
O_CH ₂ O_O	1. KOH 2. KMnO ₄ , MgSO ₄	OCH ₂ O (50)	296
CH ₂ NO ₂ OCH ₃ C ₆ H ₅ CH OCH ₃	LiBr	C_6H_5CH	234
O	LiN ₃	C ₆ H ₅ CH O OCH ₃ (83)	234
CH ₂ NO ₂ H—OH HO—H HO—H H—OH CH ₂ OH	1. NaOH 2. H ₂ SO ₄	O' N ₃ CHO (70) H—OH HO—H HO—H H—OH CH ₂ OH	297

TABLE I. NEF REACTION OF NITRO COMPOUNDS (Continued)

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
C P°	H ₂ O ₂ , K ₂ CO ₃ , CH ₃ OH	HO ₂ C(CH ₂) ₆ CO ₂ H (89)	266a
NO ₂ CH ₂ NO ₂	TiCl ₃ , H ₂ O	CHO (57)	162
	1. NaOH 2. H ₂ SO ₄	(65)	34
OH CH(NO₂)CH₃	1. NaOH 2. H ₂ SO ₄	OH (80)	34
CH(NO ₂)CH ₃ CH ₂ NO ₂	1. NaOCH ₃ 2. TiCl ₃	COCH ₃ CHO (92)	291
CH(NO ₂)CH ₃	 NaOCH₃ TiCl₃ 	COCH ₃ (81)	291
NO ₂	NaOH, (NH ₄) ₂ S ₂ O ₈ H ₂ O ₂ , K ₂ CO ₃ , CH ₃ OH	" (61–66) HO ₂ CCH ₂ C(CH ₃) ₂ CH ₂ COCH ₃ (79)	150 266a
4	1. OH- 2. H ₂ SO ₄	(51)	8
NO ₂	1. NaOH, CH ₃ OH 2. H ₂ SO ₄ 1. NaOCH ₃ , CH ₃ OH 2. TiCl ₃ , NH ₄ OAc	(61)	301 161
NO ₂	 NaOH, CH₃OH H₂SO₄ NaOH, C₂H₅OH 	" (35) (68)	301 302
NO ₂ CH ₂ NO ₂	2. HCl 1. NaOCH ₃	CH ₂ CO ₂ CH ₃ (98)	79
	2. H ₂ SO ₄ , CH ₃ OH	OCH ₃	200
O CH(NO ₂)C ₂ H ₅	 (CH₃)₂NH HCl TiCl₃, HCl, H	(55) COC ₂ H ₅ (35)	293 303
CH ₃ CH ₂ NO ₂		N CHO	
4-CH ₃ C ₆ H ₄ CH ₂ NO ₂ C ₆ H ₅ (CH ₂) ₂ NO ₂	(C ₂ H ₅) ₃ N, CAN NaOCH ₃ , TiCl ₃ , NH ₄ OAc, H ₂ O Silica gel, NaOCH ₃ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ *MnO ₄	4-CH ₃ C ₆ H ₄ CHO (85) C ₆ H ₅ CH ₂ CHO (70) " (60) " (80)	148 156 200 261

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	F
	1. NaOH, C ₂ H ₅ OH	" (64)	267
$C_0H_5CH=C(NO_2)CH_3$	2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂ 1. (n-C ₄ H ₉) ₃ SnH	C ₆ H ₅ CH ₂ COCH ₃ (72)	228
San, 611 - S(1.102) 6113	2. O ₃	Caracina (72)	220
C ₆ H ₅ CH=CHNO ₂	1.	(84)	304
	S MgBr	(CH ₃ O) ₂ CHCH(C ₆ H ₅)	
	2. H ₂ SO ₄ , CH ₃ OH		
	1. 2-CH ₃ OC ₆ H ₄ MgBr	$C_6H_5CH(C_6H_4OCH_3-2)CH(OCH_3)_2$ (76)	304
	2. H ₂ SO ₄ , CH ₃ OH 1. 3-CIC ₆ H ₄ MgBr	$C_6H_3CH(C_6H_4Cl-3)CH(OCH_3)_2$ (82)	304
	2. H ₂ SO ₄ , CH ₃ OH	30-3-1(-0-1-0)-1-(-0-1-3)2 (02)	501
	1. 4-CF₃C₀H₄MgBr	$C_6H_5CH(C_6H_4CF_3-4)CH(OCH_3)_2$ (73)	304
4-CIC ₆ H ₄ (CH ₂) ₂ NO ₂	2. H ₂ SO ₄ , CH ₃ OH 1. NaOH, C ₂ H ₃ OH	4-ClC ₆ H ₄ CH ₂ CHO (36)	267
· C.C. 24(C.L.2)/2.102	2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂	+ClC&14Cl12Cl1O (30)	207
C ₆ H ₅ CH(NO ₂)CH ₃	KNO ₂ , H ₂ SO ₄	C ₆ H ₅ COCH ₃ (—)	69
	1. NaOC₄H₀-t	" (90)	127
	2. KMnO₄ NaOH, (NH₄)₂S₂O₅	" (72)	150
	NaNO ₂ , n-C ₃ H ₇ ONO, DMSO	" (79)	197
	1. (C ₂ H ₅) ₃ N	" (87)	261
	2. C ₁₆ H ₃₃ N(CH ₃) ₃ MnO ₄		
	TiCl ₃	CH ₂ CO ₂ H (89)	229
CH ₂ CH(NO ₂)S N		\bigvee	
[]			
n-C ₈ H ₁₇ NO ₂	1. NaOCH ₃ , CH ₃ OH	$n-C_7H_{15}CH(OCH_3)_2$ (—)	33
	2. H ₂ SO ₄	Charles Colors Marin	
	 NaOC₄H₉-t KMnO₄ 	$n-C_7H_{15}CHO$ (85)	127
	1. КОН, СН₃ОН	" (83)	131
	2. KMnO ₄ , MgSO ₄	(65)	
		" (—)	139
	 KMnO₄, MgSO₄ NaOH, 8-azaflavin (28) NaOH, CH₃OH, Rose Bengal O₂, hν 	" (—) " (67)	139 140
	 KMnO₄, MgSO₄ NaOH, 8-azaflavin (28) NaOH, CH₃OH, Rose Bengal O₂, hν NaOCH₃, CH₃OH, -78° 	" (—)	139 140
	 KMnO₄, MgSO₄ NaOH, 8-azaflavin (28) NaOH, CH₃OH, Rose Bengal O₂, hν NaOCH₃, CH₃OH, -78° O₃, DMS 	" (—) " (67) " (65)	139 140 141
	 KMnO₄, MgSO₄ NaOH, 8-azaflavin (28) NaOH, CH₃OH, Rose Bengal O₂, hν NaOCH₃, CH₃OH, -78° 	" (—) " (67) " (65) " (45)	139 140 141 144
	 2. KMnO₄, MgSO₄ NaOH, 8-azaflavin (28) 1. NaOH, CH₃OH, Rose Bengal 2. O₂, hν 1. NaOCH₃, CH₃OH, −78° 2. O₃, DMS 1. KOC₄H₉-t 2. t-C₄H₉O₂H, VO(acac)₂ 1. HCl, DMF 	" (—) " (67) " (65)	139 140 141 144
	 2. KMnO₄, MgSO₄ NaOH, 8-azaflavin (28) 1. NaOH, CH₃OH, Rose Bengal 2. O₂, hν 1. NaOCH₃, CH₃OH, −78° 2. O₃, DMS 1. KOC₄H₉-t 2. t-C₄H₉O₂H, VO(acac)₂ 1. HCl, DMF 2. VCl₂, H₂O, NaOH 	(65) " (67) " (65) " (45) " (24)	139 140 141 144 170
	 2. KMnO₄, MgSO₄ NaOH, 8-azaflavin (28) 1. NaOH, CH₃OH, Rose Bengal 2. O₂, hν 1. NaOCH₃, CH₃OH, −78° 2. O₃, DMS 1. KOC₄H₉-t 2. t-C₄H₉O₂H, VO(acac)₂ 1. HCl, DMF 	" (—) " (67) " (65) " (45)	139 140 141 144 170
n-C₀H₁₃CH(NO₂)CH₃	 KMnO₄, MgSO₄ NaOH, 8-azaflavin (28) NaOH, CH₃OH, Rose Bengal O₂, hν NaOCH₃, CH₃OH, -78° O₃, DMS KOC₄H₉-t t-C₄H₉O₂H, VO(acac)₂ HCl, DMF VCl₂, H₂O, NaOH CrCl₂, CH₃OH, HCl NaNO₂, n-C₃H₇ONO, DMF, H⁺ HCl, reflux 	" (—) " (67) " (65) " (45) " (24) " (53-D) n-C ₀ H ₁₅ CO ₂ H (9-52) n-C ₆ H ₁₅ COCH ₃ (65)	139 140 141 144 170 172 196 50
n-C₀H₁₃CH(NO₂)CH₃	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hν 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF	" (—) " (67) " (65) " (45) " (24) " (53-D) n-C ₇ H ₁₅ CO ₂ H (9-52)	139 140 141 144 170 172 196 50
n-C₀H₁₃CH(NO₂)CH₃	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hν 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O	" (—) " (67) " (65) " (45) " (24) " (53-D) n-C ₀ H ₁₅ CO ₂ H (9-52) n-C ₆ H ₁₅ COCH ₃ (65)	139 140 141 144 170 172 196 50
n-C₀H₁₃CH(NO₂)CH₃	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hν 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF	" (—) " (67) " (65) " (45) " (24) " (53-D) n-C ₀ H ₁₅ CO ₂ H (9-52) n-C ₆ H ₁₃ COCH ₃ (65) " (71) " (61-D)	139 140 141 144 170 172 196 50 170
n-C₀H₁₃CH(NO₂)CH₃	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hν 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF	" (—) " (67) " (65) " (45) " (24) " (53-D) n-C ₀ H ₁₅ CO ₂ H (9-52) n-C ₆ H ₁₃ COCH ₃ (65) " (71) " (61-D) " (47-83)	139 140 141 144 170 172 196 50 170
n-C₀H₁₃CH(NO₂)CH₃ CH.=C(NO₃)C.H.₂₂n	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hν 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF	" (—) " (67) " (65) " (45) " (24) " (53-D) n-C ₀ H ₁₅ CO ₂ H (9-52) n-C ₀ H ₁₃ COCH ₃ (65) " (71) " (61-D) " (47-83) " (83)	139 140 141 144 170 172 196 50 170 172 196 197
	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hν 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF	" (—) " (67) " (65) " (45) " (24) " (53-D) n-C ₀ H ₁₅ CO ₂ H (9-52) n-C ₆ H ₁₃ COCH ₃ (65) " (71) " (61-D) " (47-83)	139 140 141 144 170 172 196 50 170 172 196 197
	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hv 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMSO 1. (i-C ₄ H ₉) ₃ Al 2. (C ₂ H ₅) ₂ O 3. HCl, rt	" (—) " (67) " (65) " (45) " (45) " (53-D) n-C ₀ H ₁₅ CO ₂ H (9-52) n-C ₀ H ₁₃ COCH ₃ (65) " (71) " (61-D) " (47-83) " (83) i-C ₅ H ₁₁ COC ₆ H ₁₃ -n I (50) + i-C ₅ H ₁₁ CH(NO ₂)C ₆ H ₁₃ -n II (38)	139 140 141 144 170 172 196 50 170 172 196 197 259
	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hν 1. NaOCH ₃ , CH ₃ OH, −78° 2. O ₃ , DMS 1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMSO 1. (i-C ₄ H ₉) ₃ Al 2. (C ₂ H ₅) ₂ O 3. HCl, rt 1. (i-C ₄ H ₉) ₃ Al	" (—) " (67) " (65) " (45) " (24) " (53-D) n-C ₀ H ₁₅ CO ₂ H (9-52) n-C ₀ H ₁₃ COCH ₃ (65) " (71) " (61-D) " (47-83) " (83) i-C ₅ H ₁₁ COC ₆ H ₁₃ -n I (50) +	139 140 141 144 170 172 196 50 170 172 196 197 259
$CH_2 = C(NO_2)C_6H_{13}-n$	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hν 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₇ -t 2. t-C ₄ H ₇ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMSO 1. (i-C ₄ H ₉) ₃ Al 2. (C ₂ H ₃) ₂ O 3. HCl, rt 1. (i-C ₄ H ₉) ₃ Al 2. H ₃ O ⁺	" (—) " (67) " (65) " (45) " (24) " (53-D) n-C ₀ H ₁₅ CO ₂ H (9-52) n-C ₀ H ₁₃ COCH ₃ (65) " (71) " (61-D) " (47-83) " (83) i-C ₅ H ₁₁ COC ₆ H ₁₃ -n I (50) + i-C ₅ H ₁₁ CH(NO ₂)C ₆ H ₁₃ -n II (38) I (86) + II (7)	139 140 141 144 170 172 196 50 170 172 196 197 259
n-C₀H₁₃CH(NO₂)CH₃ CH₂=C(NO₂)C₀H₁₃-n CH₃CO(CH₂)₂CH(NO₂)C₃H₁-n CH₃COCH₂CH(CH₃)CH(NO₂)C₂H₅	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hν 1. NaOCH ₃ , CH ₃ OH, −78° 2. O ₃ , DMS 1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMSO 1. (i-C ₄ H ₉) ₃ Al 2. (C ₂ H ₅) ₂ O 3. HCl, rt 1. (i-C ₄ H ₉) ₃ Al	" (—) " (67) " (65) " (45) " (45) " (24) " (53-D) n-C ₂ H ₁₅ CO ₂ H (9–52) n-C ₄ H ₁₅ COCH ₃ (65) " (71) " (61-D) " (47–83) " (83) i-C ₅ H ₁₁ COC ₆ H ₁₅ -n I (50) + i-C ₃ H ₁₁ CH(NO ₂)C ₆ H ₁₃ -n II (38) I (86) + II (7) CH ₃ CO(CH ₂) ₂ COC ₃ H ₇ -n (71) CH ₃ COCH ₂ CH(CH ₃)COC ₂ H ₅ (78)	139 140 141 144 170 172 196 50 170 172 196 197 259 259
CH ₂ =C(NO ₂)C ₆ H ₁₃ -n CH ₃ CO(CH ₂) ₂ CH(NO ₂)C ₃ H ₇ -n CH ₃ COCH ₂ CH(CH ₃)CH(NO ₂)C ₂ H ₅	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hv 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₇ -t 2. t-C ₄ H ₇ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMSO 1. (i-C ₄ H ₉) ₃ Al 2. (C ₅ H ₉) ₃ Al 2. (C ₇ H ₉) ₃ Al 2. H ₃ O ⁺ NaNO ₂ , n-C ₃ H ₇ ONO, DMSO Silica gel, KMnO ₄ 1. NaOH, C ₂ H ₃ OH	" (—) " (67) " (65) " (45) " (24) " (53-D) n-C ₂ H ₁₅ CO ₂ H (9-52) n-C ₄ H ₁₃ COCH ₃ (65) " (71) " (61-D) " (47-83) " (83) i-C ₅ H ₁₁ COC ₆ H ₁₃ -n I (50) + i-C ₃ H ₁₁ CH(NO ₂)C ₆ H ₁₃ -n II (38) I (86) + II (7) CH ₃ CO(CH ₂) ₂ COC ₃ H ₇ -n (71)	139 140 141 144 170 172 196 50 170 172 196 197 259 259
CH ₂ =C(NO ₂)C ₆ H ₁₃ -n CH ₃ CO(CH ₂) ₂ CH(NO ₂)C ₃ H ₇ -n CH ₃ COCH ₂ CH(CH ₃)CH(NO ₂)C ₂ H ₅ CH ₃ COCH ₂ C(CH ₃) ₂ CH(NO ₂)CH ₃	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hv 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₇ -t 2. t-C ₄ H ₇ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMSO 1. (i-C ₄ H ₉) ₃ Al 2. (C ₂ H ₅) ₂ O 3. HCl, rt 1. (i-C ₄ H ₉) ₃ Al 2. H ₃ O ⁺ NaNO ₂ , n-C ₃ H ₇ ONO, DMSO Silica gel, KMnO ₄ 1. NaOH, C ₂ H ₅ OH 2. HCl	" (—) " (67) " (65) " (45) " (45) " (24) " (53-D) n-C ₂ H ₁₅ CO ₂ H (9–52) n-C ₄ H ₁₅ COCH ₃ (65) " (71) " (61-D) " (47–83) " (83) i-C ₅ H ₁₁ COC ₆ H ₁₃ -n I (50) + i-C ₃ H ₁₁ CH(NO ₂)C ₆ H ₁₃ -n II (38) I (86) + II (7) CH ₃ CO(CH ₂) ₂ COC ₃ H ₇ -n (71) CH ₃ COCH ₂ CH(CH ₃)COC ₂ H ₅ (78) CH ₃ COCH ₂ C(CH ₃) ₂ COCH ₃ (70)	139 140 141 144 170 172 196 50 170 172 196 197 259 259 197 202, 305
CH ₂ =C(NO ₂)C ₆ H ₁₃ -n CH ₃ CO(CH ₂) ₂ CH(NO ₂)C ₃ H ₇ -n CH ₃ COCH ₂ CH(CH ₃)CH(NO ₂)C ₂ H ₅ CH ₃ COCH ₂ C(CH ₃) ₂ CH(NO ₂)CH ₃	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hv 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₇ -t 2. t-C ₄ H ₇ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMSO 1. (i-C ₄ H ₉) ₃ Al 2. (C ₂ H ₅) ₂ O 3. HCl, rt 1. (i-C ₄ H ₉) ₃ Al 2. H ₃ O ⁺ NaNO ₂ , n-C ₃ H ₇ ONO, DMSO Silica gel, KMnO ₄ 1. NaOH, C ₂ H ₅ OH 2. HCl 1. NaOH	" (—) " (67) " (65) " (45) " (45) " (24) " (53-D) n-C ₂ H ₁₅ CO ₂ H (9–52) n-C ₄ H ₁₅ COCH ₃ (65) " (71) " (61-D) " (47–83) " (83) i-C ₅ H ₁₁ COC ₆ H ₁₅ -n I (50) + i-C ₃ H ₁₁ CH(NO ₂)C ₆ H ₁₃ -n II (38) I (86) + II (7) CH ₃ CO(CH ₂) ₂ COC ₃ H ₇ -n (71) CH ₃ COCH ₂ CH(CH ₃)COC ₂ H ₅ (78)	139 140 141 144 170 172 196 50 170 172 196 197 259 259
CH ₂ =C(NO ₂)C ₆ H ₁₃ - n CH ₃ CO(CH ₂) ₂ CH(NO ₂)C ₃ H ₇ - n CH ₃ COCH ₂ CH(CH ₃)CH(NO ₂)C ₂ H ₅ CH ₃ COCH ₂ C(CH ₃) ₂ CH(NO ₂)CH ₃ CH ₃ C(CH ₃)=CHCO(CH ₂) ₃ NO ₂	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hv 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₇ -t 2. t-C ₄ H ₇ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMSO 1. (i-C ₄ H ₉) ₃ Al 2. (C ₂ H ₅) ₂ O 3. HCl, rt 1. (i-C ₄ H ₉) ₃ Al 2. H ₃ O ⁺ NaNO ₂ , n-C ₃ H ₇ ONO, DMSO Silica gel, KMnO ₄ 1. NaOH, C ₂ H ₅ OH 2. HCl	" (—) " (67) " (65) " (45) " (45) " (24) " (53-D) n-C ₂ H ₁₅ CO ₂ H (9–52) n-C ₄ H ₁₅ COCH ₃ (65) " (71) " (61-D) " (47–83) " (83) i-C ₅ H ₁₁ COC ₆ H ₁₃ -n I (50) + i-C ₃ H ₁₁ CH(NO ₂)C ₆ H ₁₃ -n II (38) I (86) + II (7) CH ₃ CO(CH ₂) ₂ COC ₃ H ₇ -n (71) CH ₃ COCH ₂ CH(CH ₃)COC ₂ H ₅ (78) CH ₃ COCH ₂ C(CH ₃) ₂ COCH ₃ (70)	139 140 141 144 170 172 196 50 170 172 196 197 259 259 197 202, 305
CH ₂ =C(NO ₂)C ₆ H ₁₃ -n CH ₃ CO(CH ₂) ₂ CH(NO ₂)C ₃ H ₇ -n	2. KMnO ₄ , MgSO ₄ NaOH, 8-azaflavin (28) 1. NaOH, CH ₃ OH, Rose Bengal 2. O ₂ , hv 1. NaOCH ₃ , CH ₃ OH, -78° 2. O ₃ , DMS 1. KOC ₄ H ₉ -t 2. t-C ₄ H ₉ O ₂ H, VO(acac) ₂ 1. HCl, DMF 2. VCl ₂ , H ₂ O, NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF, H ⁺ HCl, reflux 1. HCl, DMF 2. VCl ₂ , H ₂ O 3. NaOH CrCl ₂ , CH ₃ OH, HCl NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMF NaNO ₂ , n-C ₃ H ₇ ONO, DMSO 1. (i-C ₄ H ₉) ₃ Al 2. (C ₂ H ₅) ₂ O 3. HCl, rt 1. (i-C ₄ H ₉) ₃ Al 2. H ₃ O ⁺ NaNO ₂ , n-C ₃ H ₇ ONO, DMSO Silica gel, KMnO ₄ 1. NaOH 2. KMnO ₄	" (—) " (67) " (65) " (45) " (24) " (53-D) n-C ₂ H ₁₃ CO ₂ H (9-52) n-C ₆ H ₁₃ COCH ₃ (65) " (71) " (61-D) " (47-83) " (83) i-C ₅ H ₁₁ COC ₆ H ₁₃ -n I (50) + i-C ₃ H ₁₁ CH(NO ₂)C ₆ H ₁₃ -n II (38) I (86) + II (7) CH ₃ CO(CH ₂) ₂ COC ₃ H ₇ -n (71) CH ₃ COCH ₂ CH(CH ₃) ₂ COCH ₃ (78) CH ₃ COCH ₂ C(CH ₃) ₂ COCH ₃ (70) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ CHO (—)	144 170 172 196 50 170 172 196 197 259 259 197 202, 305

2. TiCl₃

738

		į
•		

_	A	TABLE I. Nef Reaction of Nitro	COMPOUNDS (Continued)	
	Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
	CH(NO ₂)CH ₃	1. NaOCH ₃ 2. TiCl ₃	COCH ₃ (60)	291
		1. NaOH 2. KMnO ₄	(64)	310
	CH ₂ NO ₂	1. NaOH	CHO (90)	310
740	CH ₂ CH(NO ₂)CH ₃	2. O ₃ , CH ₃ OH 1. NaOCH ₃ , CH ₃ OH 2. TiCl ₃ , NH ₄ OAc 3. H ₃ O+	(52)	308
Ō	A200 1 4 50	4. Ac ₂ O 1. NaOH 2. H ₂ SO ₄ , CH ₃ OH	Ö " (84)	308
	NO ₂	3. Ac ₂ O 1. OH ⁻ 2. KMnO ₄	4 (-)	119
	NO ₂	1. OH- 2. KMnO ₄	(-)	311
	NO ₂	1. NaOH, CH ₃ OH 2. H ₂ SO ₄	(55)	301
		39.	(-)	301
	NO ₂ O NO ₂ (CH ₂) ₂ CO ₂ H	1. NaOH 2. H ⁺	$HO_2C(CH_2)_4CO(CH_2)_2CO_2H$ (73)	99
		1. (C ₂ H ₅) ₃ N 2. CAN, heat	(78)	98
741	NO ₂ OH N NO NO NO NO NO NO NO NO	1. LiOCH ₃ , Na ₂ B ₄ O ₇ 2. KMnO ₄	(68)	136
	NO ₂ (CH ₂) ₂ NO ₂	1. NaOH, C ₂ H ₅ OH 2. H ₂ SO ₄ , H ₂ O, C ₃ H ₁₂	CH ₂ CHO (29)	267
		71	(53)	312
	C ₆ H ₅ (CH ₂) ₃ NO ₂	1. NaOCH ₃ , CH ₃ OH	$C_6H_5(CH_2)_2CH(OCH_3)_2$ (—)	33
		2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t	C ₆ H ₅ (CH ₂) ₂ CHO (82)	127
		2. KMnO ₄ 1. ZnCl ₂ , HCl 2. HCl, H ₂ O	" (60)	182

TABLE I. NEF REACTION OF NITRO COMPOUNDS (Continued)

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	ž.
C ₆ H ₅ CH(NO ₂)C ₂ H ₅	SnCl ₂ , HCl	$C_6H_5COC_2H_5$ (—)	69
C ₆ H ₅ CH ₂ CH(NO ₂)CH ₃	1. HCl, DMF	C ₆ H ₅ CH ₂ COCH ₃ (65)	17
-0-,,,	2. VCl ₂ , H ₂ O	Control of the state of the sta	
	3. NaOH		
	1. DBU, TMSCI	" (92)	14
	2. MCPBA	(72)	4.7
	1. NaOH, C₂H₃OH	" (89)	26
		(09)	20
C 11 C/1 C/1/C \ C/1	2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂	" (97)	22
$C_0H_5CH=C(NO_2)CH_3$	1. (n-C₄H₀)₃SnH	" (97)	22
	2. O ₃		
4-CH ₃ OC ₆ H ₄ CH=CHNO ₂		4-CH ₃ OC ₆ H ₄ CH ₂ CHO (70)	22
4-CIC ₆ H ₄ CH ₂ CH(NO ₂)CH ₃	1. DBU, TMSCI	4-CIC ₆ H ₄ CH ₂ COCH ₃ (98)	14
	2. MCPBA		
4-CH ₃ C ₆ H ₄ (CH ₂) ₂ NO ₂	 NaOH, C₂H₅OH 	4-CH ₃ C ₆ H ₄ CH ₂ CHO (65)	26
	2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂		
4-CH ₃ OC ₆ H ₄ (CH ₂) ₂ NO ₂	***	4-CH ₃ OC ₆ H ₄ CH ₂ CHO (67)	26
i-C ₄ H ₉ CO(CH ₂) ₂ CH(NO ₂)CH ₃	1. NaOH	i-C ₄ H ₉ CO(CH ₂) ₂ COCH ₃ (—)	12
- carrye o (cr2)/cr2(1.02) cr2,	2. KMnO ₄	. 041900(012)/200013 ()	
$C_2H_5C(CH_3)=CHCO(CH_2)_3NO_2$	1. NaOH	$C_2H_3C(CH_3)=CHCO(CH_2)_2CHO$ (—)	129
C2113C(C113)—C11CO(C112)314O2		C2113C(C113)—C11CO(C112)2C11O (—)	12.
CH CH(CH) CH CO(CH) NO	2. KMnO ₄	CH CH/CH CO/CH CO/CH CHO	10
C ₂ H ₅ CH(CH ₃)CH ₂ CO(CH ₂) ₃ NO ₂	1. NaOH	$C_2H_5CH(CH_3)CH_2CO(CH_2)_2CHO$ (—)	129
OH OH OHOUS	2. KMnO ₄	ATT	
C₀H₅CH=CHCH₂NO₂	$(C_2H_5)_3N$, CAN	C ₆ H ₅ CH=CHCHO (78)	148
CH ₃ CH(NO ₂)CH=CHCOCH=CH-	1. KOH	CH ₃ COCH=CHCOCH=CHCOCH ₃ (50)	15
CH(NO ₂)CH ₃	2. (CH ₃ O) ₂ SO ₂ , heat		
$CH_3C(CH_3) = CHCO(CH_2)_2CH(NO_2)CH_3$	1. NaOH	$CH_3C(CH_3) = CHCO(CH_2)_2COCH_3$ (—)	129
	2. KMnO ₄	1000 400 5000 00 000 00 0000 1000 1000 1	
	Silica gel, CH ₃ OH	(51)	152
COCH-CHCCH)-NO N		// \\	
OCOCH=CHC(CH ₃)=NO ₂ Na		OCOCH=CHCOCH ₃	
C ₂ H ₅ CH(NO ₂)C(CH ₃) ₂ CH ₂ COCH ₃	CH3OH, NaO2CH, e ⁻	$C_2H_5COC(CH_3)_2CH_2COCH_3$ (60)	193
$n-C_4H_9SO_2(CH_2)_2CH(NO_2)C_2H_5$	1. NaOH	$n-C_4H_9SO_2(CH_2)_2COC_2H_5$ (—)	300
כ ה כה(אט /כוכה / כה כטכה	1 Noon Chon	C H COC(CH) CH COCH (70)	20
C ₂ H ₃ CH(NO ₂)C(CH ₃) ₂ CH ₂ COCH ₃	1. NaOH, C₂H₅OH	C ₂ H ₃ COC(CH ₃) ₂ CH ₂ COCH ₃ (70)	30
	2. HCl		
C ₂ H ₅ CH(NO ₂)C(CH ₃) ₂ CH ₂ COCH ₃ n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂	2. HCl 1. NaOCH ₃	$C_2H_3COC(CH_3)_2CH_2COCH_3$ (70) $n-C_5H_{11}CH=C(CH_3)CHO$ (50)	
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂	2. HCl 1. NaOCH ₃ 2. TiCl ₃	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50)	29
	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH		29
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃	 HCl NaOCH₃ TiCl₃ NaOH KMnO₄ 	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—)	29 12
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70)	29 12
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ "	$n\text{-}C_5H_{11}CH = C(CH_3)CHO$ (50) $CH_3C(CH_3) = CHCO(CH_2)_2COCH_3$ (—) $2\text{-}HOC_6H_4CH_2COCH_3$ (70) $4\text{-}HOC_6H_4CH_2COCH_3$ (56)	29 12 22 22
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃	 HCl NaOCH₃ TiCl₃ NaOH KMnO₄ 	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53)	29 12 22 22
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ "	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53)	29 12 22 22 22
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ =CHCH ₂ TMS, AlCl ₃	$n\text{-}C_5H_{11}CH = C(CH_3)CHO$ (50) $CH_3C(CH_3) = CHCO(CH_2)_2COCH_3$ (—) $2\text{-}HOC_6H_4CH_2COCH_3$ (70) $4\text{-}HOC_6H_4CH_2COCH_3$ (56)	29 12 22 22 22
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ =CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53)	29 12 22 22 22
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ =CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55)	29 12 22 22 22 15
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ =CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53)	29 12 22 22 22 15
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ =CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82)	29 12 22 22 22 15
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ =CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77)	29 12 22 22 22 15
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ =CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82)	29 12 22 22 22 15
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93)	299 122 222 222 155 222 222 222 222
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77)	29 12 22 22 22 15 22 22 22 22 22 22 22 22 22 22 22 22 22
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-CIC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80)	29 12 22 22 22 15 22 22 22 22 22 22 22 22 22 22 22 22 22
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAlH ₄	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93)	299 12 22 22 22 15 22 22 22 22 22 22 22
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75)	299 12 22 22 22 15 22 22 22 22 22 22 22 22
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAlH ₄	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80)	299 12 22 22 22 15 22 22 22 22 22 22
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAlH ₄ 2. H ⁺ NaH ₂ PO ₂ , RaNi, H ⁺	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75) " (88)	29 12 22 22 22 25 15 22 22 22 22 22 22 22 22 22
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAlH ₄ 2. H ⁺ NaH ₂ PO ₂ , RaNi, H ⁺ 1. C ₂ H ₃ OH, SnCl ₂	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75)	29 12 22 22 22 25 15 22 22 22 22 22 22 22 22 22
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-CIC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAlH ₄ 2. H ⁺ NaH ₂ PO ₂ , RaNi, H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75) " (88) C ₆ H ₅ CH(OC ₂ H ₅)COCH ₃ (95)	299 12 222 222 155 222 222 222 222 222 222
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAlH ₄ 2. H ⁺ NaH ₂ PO ₂ , RaNi, H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ SH, SnCl ₂	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75) " (88)	299 122 222 222 155 222 222 222 222 222 222
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAlH ₄ 2. H ⁺ NaH ₂ PO ₂ , RaNi, H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ SH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ SH, SnCl ₂ 2. H ⁺	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-ClC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75) " (88) C ₆ H ₅ CH(OC ₂ H ₅)COCH ₃ (95) C ₆ H ₅ CH(SC ₂ H ₅)COCH ₃ (90)	29 12 22 22 22 15 22 22 22 22 22 22 22 22 22 22 22
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-CIC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ =CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAlH ₄ 2. H ⁺ NaH ₂ PO ₂ , RaNi, H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ SH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ SH, SnCl ₂ 2. H ⁺ 1. C ₄ H ₅ SH, SnCl ₂ 2. H ⁺ 1. CH ₂ =CHCH ₂ TMS, AlCl ₃	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-CIC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75) " (88) C ₆ H ₅ CH(OC ₂ H ₅)COCH ₃ (95)	299 12 222 222 15 22 22 22 22 22 22 22 22 22 22 22
n-C ₅ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-ClC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ =CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAiH ₄ 2. H ⁺ NaH ₂ PO ₂ , RaNi, H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ SH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ SH, SnCl ₂ 2. H ⁺ 1. Ch ₂ =CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-ClC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75) " (88) C ₆ H ₅ CH(OC ₂ H ₅)COCH ₃ (95) C ₆ H ₅ CH(SC ₂ H ₅)COCH ₃ (90)	29 12 22 22 22 15 22 22 22 22 22 22 22 22 22 22 22
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-CIC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAiH ₄ 2. H ⁺ NaH ₂ PO ₂ , RaNi, H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₄ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₄ H ₃ SH, SnCl ₂ 2. H ⁺ 1. C ₄ H ₃ SH, SnCl ₂ 2. H ⁺ 1. Ch ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-ClC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75) " (88) C ₆ H ₅ CH(OC ₂ H ₅)COCH ₃ (95) C ₆ H ₅ CH(SC ₂ H ₅)COCH ₃ (90) C ₆ H ₅ CH(CH ₂ CH=CH ₂)COCH ₃ (51)	29 12 22 22 22 15 22 22 22 22 22 22 22 22 22 25 25
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-CIC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAlH ₄ 2. H ⁺ NaH ₂ PO ₂ , RaNi, H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ SH, SnCl ₂ 2. H ⁺ 1. C ₄ H ₅ SH, SnCl ₂ 2. H ⁺ 1. C ₄ H ₅ CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. C ₆ H ₅ CH ₂ OH, SnCl ₂	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-ClC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75) " (88) C ₆ H ₅ CH(OC ₂ H ₅)COCH ₃ (95) C ₆ H ₅ CH(SC ₂ H ₅)COCH ₃ (90)	29 12 22 22 22 15 22 22 22 22 22 22 22 22 22 25 25
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-CIC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAlH ₄ 2. H ⁺ NaH ₂ PO ₂ , RaNi, H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ SH, SnCl ₂ 2. H ⁺ 1. C ₄ H ₅ SH, SnCl ₂ 2. H ⁺ 1. Ch ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. C ₆ H ₅ CH ₂ OH, SnCl ₂ 2. H ⁺	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-ClC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75) " (88) C ₆ H ₅ CH(OC ₂ H ₅)COCH ₃ (95) C ₆ H ₅ CH(CC ₂ H ₅)COCH ₃ (90) C ₆ H ₅ CH(CH ₂ CH=CH ₂)COCH ₃ (51)	29 12 22 22 22 15 22 22 22 22 22 22 22 22 22 22 22 22 22
n-C ₃ H ₁₁ CH=C(CH ₃)CH ₂ NO ₂ (CH ₃) ₂ C=CHCO(CH ₂) ₂ CH(NO ₂)CH ₃ 2-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-HOC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ OC ₆ H ₄ CH=CHNO ₂ 4-CIC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-BrC ₆ H ₄ CH=CH(NO ₂)CH ₃	2. HCl 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. KMnO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ " 1. CH ₂ —CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ NaH ₂ PO ₂ , RaNi, H ⁺ 1. CH ₃ OH, SnCl ₂ 2. H ⁺ 1. LiHB(C ₄ H ₉ -s) ₃ 2. H ₂ SO ₄ 1. LiAlH ₄ 2. H ⁺ NaH ₂ PO ₂ , RaNi, H ⁺ 1. C ₂ H ₃ OH, SnCl ₂ 2. H ⁺ 1. C ₂ H ₃ SH, SnCl ₂ 2. H ⁺ 1. C ₄ H ₅ SH, SnCl ₂ 2. H ⁺ 1. C ₄ H ₅ CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc 1. C ₆ H ₅ CH ₂ OH, SnCl ₂	n-C ₅ H ₁₁ CH=C(CH ₃)CHO (50) CH ₃ C(CH ₃)=CHCO(CH ₂) ₂ COCH ₃ (—) 2-HOC ₆ H ₄ CH ₂ COCH ₃ (70) 4-HOC ₆ H ₄ CH ₂ COCH ₃ (56) 4-CH ₃ OC ₆ H ₄ CH ₂ CHO (53) 4-ClC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (55) 4-BrC ₆ H ₄ CH ₂ COCH ₃ (82) " (77) C ₆ H ₅ CH(OCH ₃)COCH ₃ (93) C ₆ H ₅ CH ₂ COCH ₃ (80) " (75) " (88) C ₆ H ₅ CH(OC ₂ H ₅)COCH ₃ (95) C ₆ H ₅ CH(SC ₂ H ₅)COCH ₃ (90) C ₆ H ₅ CH(CH ₂ CH=CH ₂)COCH ₃ (51)	300 299 122 222 222 155 222 222 222 222 222 222

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs
CH ₃ CH=C(NO ₂)SC ₆ H ₅	1. NaOCH ₃ 2. O ₃	CH ₃ OCH(CH ₃)COSC ₆ H ₅ (79)	313
	1. ONK	NCH(CH ₃)COSC ₆ H ₅ (68)	143a
	2. O ₃ 1. KOH	CH ₃ CHOHCOSC ₆ H ₅ (58)	313
	2. O ₃ 1. NaTs 2. O ₃	TsCH(CH ₃)COSC ₆ H ₅ (56)	313
	 FCH₂CONHK 	FCH ₂ CONHCH(CH ₃)COSC ₆ H ₅ (62)	313
	2. O ₃ 1. NaOC ₃ H ₇ - <i>i</i> 2. O ₃	i-C ₃ H ₇ OCH(CH ₃)COSC ₆ H ₅ (61)	313
	2. O ₃ 1. (CH ₃ O ₂ C) ₂ CHK 2. O ₃	(CH3O2C)2CHCH(CH3)COSC6H5 (60)	313
	2. O₃ 1. C₀H₅Li 2. O₃	C ₆ H ₅ CH(CH ₃)COSC ₆ H ₅ (39)	313
	1. C ₆ H ₅ COCH ₂ Li 2. O ₃	C ₆ H ₅ COCH ₂ CH(CH ₃)COSC ₆ H ₅ (43)	313
	2. ОЗ ОК ОК ОС	OCH(CH ₃)COSC ₆ H ₅ (51)	313
	2.O ₃		

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
OCO ₂ CH ₃	1. NaOCH ₃ 2. TiCl ₃ , NH ₄ OAc	O CO ₂ CH ₃ (77)	296
CH(NO ₂)CH ₃	1. NaOCH ₃	COCH ₃ " (63)	296
\sim 0 \sim	2. O ₃ TiCl ₃ , NH ₄ OAc, H ₂ O	(70)	154
CH(CH ₃)CH ₂ NO ₂	1. NaOCH ₃ , CH ₃ OH 2. TiCl ₃ , NH ₄ OAc	CH(CH ₃)CHO CH ₃ O ₂ C(CH ₂),CO(CH ₂) ₂ CH(OCH ₃) ₂ (79)	315
(CH ₂) ₂ CH(OCH ₃) ₂	1. LiOCH ₃	,O (70)	128
	2. NaMnO ₄		126
HO ₂ C CH ₂ NO ₂	1. KOH, CH ₃ OH	HO ₂ C CHO (85)	131
C ₂ H ₅ O ₂ C N CH ₂ NO ₂	2. KMnO ₄ , MgSO ₄	C ₂ H ₅ O ₂ C N CHO	
C ₆ H ₅ CH ₂ O ₂ CN CH ₂ NO ₂	1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄	$C_6H_5CH_2O_2CN$ Cho (95)	131
C ₆ H ₅ CH ₂ O ₂ CN CO ₂ CH ₃		C ₆ H ₅ CH ₂ O ₂ CN CO ₂ CH ₃	
CH(NO ₂)CH ₃	1. NaOCH ₃ 2. TiCl ₃	COCH ₃ (40)	291
	1. KOH 2. H ₂ O	(12)	120
CH ₂ NO ₂		CH ₂	
O ₂ N	1. OH ⁻ 2. KMnO ₄	0 (61)	117, 12
4	1. OH ⁻ 2. KMnO ₄	° - (-)	117
NO ₂	1. OH- 2. KMnO ₄	(-)	122
NO ₂	1. OH- 2. KMnO ₄	(-)	118
O ₂ N	1. OH⁻ 2. KMnO₄		119
- 4		** The state of th	

			,	
	į	S	١	
١	1)	

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
	1. (C ₂ H ₅) ₃ N	" (65)	261
CH ₂ CH(NO ₂)C ₂ H ₅	 C₁₆H₃₃N(CH₃)⁺ MnO₄ NaOCH₃, CH₃OH 	C H (42)	308
CH2CH(NO2)C2H5	2. TiCl ₃ , NH ₄ OAc	C ₂ H ₅ (43)	300
CO₂H	3. H ₃ O+		
2.00	4. Ac ₂ O, H ⁺	ll U	
	1. NaOH	" (85)	308
	 H₂SO₄, CH₃OH Ac₂O, H⁺ 		
H NO ₂	1. OH-	H (52)	121
Ÿ\	2. KMnO₄		
н	CH b	Ĥ (14)	244
02	C ₆ H ₆ , hv	O (14)	244
		\rightarrow	
C4H9-1		Ċ ₄ H ₉ - <i>t</i>	
		+ NOH (33)	
		\vee	
		C ₄ H ₉ -t	
		+ NO ₂ (49)	
		\rightarrow	
		C ₄ H ₉ -t	
) No	H ₂ O ₂ , K ₂ CO ₃ , CH ₃ OH	HO ₂ C CO ₂ H (88)	266a
NO ₂		*	
7		T.	
)	H ₂ O ₂ , K ₂ CO ₃ , CH ₃ OH	HO ₂ C(CH ₂) ₄ CO(CH ₂) ₂ COCH ₃ (61)	266a
NO ₂			1000000
(CH ₂) ₂ COCH ₃			
NO_2	1. LiHB(C ₄ H ₉ -s) ₃	· (—)	317
	2. H ₂ SO ₄		
1		<u> </u>	
C ₄ H ₉ -n		C_4H_9-n	
		0 (76)	98
~ Po~	1. (C ₂ H ₅) ₃ N 2. CAN heat	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	1. $(C_2H_5)_3N$ 2. CAN, heat	(76)	
	1. (C ₂ H ₅) ₃ N 2. CAN, heat		
NO ₂	2. CAN, heat		
\rightarrow	1. (C ₂ H ₅) ₃ N 2. CAN, heat 1. NaOCH ₃ 2. TiCl ₃ , NH ₄ OAc		99
NO ₂	2. CAN, heat 1. NaOCH ₃	(80)	
NO ₂	2. CAN, heat 1. NaOCH ₃ 2. TiCl ₃ , NH ₄ OAc	(80)	99
NO ₂	 CAN, heat NaOCH₃ TiCl₃, NH₄OAc LiOCH₃ 	(80)	
NO ₂ O NO ₂ NO ₂	2. CAN, heat 1. NaOCH ₃ 2. TiCl ₃ , NH ₄ OAc 1. LiOCH ₃ 2. KMnO ₄ 1. NaH, t-C ₄ H ₉ OH	(80)	99
NO ₂	2. CAN, heat 1. NaOCH ₃ 2. TiCl ₃ , NH ₄ OAc 1. LiOCH ₃ 2. KMnO ₄	(80)	99 99

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
NO ₂	1. KOH	NO ₂ (92)	132, 318
CH ₂ NO ₂	2. KMnO ₄ , Na ₂ B ₄ O ₇	CHO	
CH2NO2	"	CHO (88)	132, 318
NO ₂		NO ₂	
N O	25	N	132, 318
		(85)	132, 310
N CH ₂ NO ₂		СНО	
NO ₂	Silica gel, CH ₃ OH	NO ₂ Q (34)	152
CHC(CH ₃)=NO ₂ Na	Sinca goi, crisori	CHCOCH ₃	132
Y Y		Y Y	
\sim	NaOH, H ₂ O, (n-C ₄ H ₉) ₄ N+Br-		314
5.0	NaOH, H ₂ O, (<i>n</i> -C ₄ H ₉) ₄ N Bi	(-)	314
CH ₂ CH(NO ₂)CH ₃			
√ 0			
0 NO	1. NaOCH ₃ , CH ₃ OH	CH ₃ O ₂ C(CH ₂) ₅ CO(CH ₂) ₂ CH(OCH ₃) ₂ (87)	315
NO ₂ (CH ₂) ₂ CH(OCH ₃) ₂	2. TiCl ₃ , NaOAc		
()			
o o	Silica gel, CH ₃ OH	Q (54)	152
CHC(CH ₃)=NO ₂ Na		CHCOCH ₃	
}		()	
		\smile	
¥.	1.7-0. 110	7.5	100
CH ₂ NO ₂	 ZnCl₂, H₂O K₂CO₃ 	CHO ()	180
n-C ₁₀ H ₂₁ NO ₂	1. NaOC₄H₀-t	n-C ₀ H ₁₉ CHO (92)	127
	2. KMnO ₄		
C ₆ H ₅ (CH ₂) ₄ NO ₂	 ZnCl₂, H₂O CH₃OH, H⁺ 	$C_6H_5(CH_2)_3CH(OCH_3)_2$ (—)	182
$CH_3C(CH_3)=CHCO(CH_2)_2CH(NO_2)C_2H_5$	2. CH ₃ OH, H 1. NaOH	$CH_3C(CH_3)=CHCO(CH_2)_2COC_2H_5$ (—)	129
	2. KMnO ₄		
$C_2H_3C(CH_3) = CHCO(CH_2)_2CH(NO_2)CH_3$	1. NaOH 2. KMnO ₄	$C_2H_5C(CH_3)=CHCO(CH_2)_2COCH_3$ (—)	129
45.5070.00.00.00.00	C		
$-C_4H_9CO(CH_2)_2CH(NO_2)C_2H_5$	1. NaOH	i-C ₄ H ₉ CO(CH ₂) ₂ COC ₂ H ₅ (—)	129
n. de. 8 3	1. NaOH 2. KMnO ₄		
N 900 B 35	1. NaOH 2. KMnO ₄ 1. NaOH	i-C ₄ H ₉ CO(CH ₂) ₂ COC ₂ H ₅ (—) s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—)	129 129
s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃	1. NaOH 2. KMnO ₄		
r-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃ CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ CH(NO ₂)CH ₃	 NaOH KMnO₄ NaOH KMnO₄ TiCl₃, NH₄OAc, H₂O HO(CH₂)₂OH 	s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—) CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ COCH ₃ (70)	129 158
s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃ CH ₂ =CH(CH ₂) ₃ CH=CHCH ₂ CH(NO ₂)CH ₃ n-C ₆ H ₁₃ CH(NO ₂)(CH ₂) ₂ CN	1. NaOH 2. KMnO ₄ 1. NaOH 2. KMnO ₄ 1. TiCl ₃ , NH ₄ OAc, H ₂ O 2. HO(CH ₂) ₂ OH CH ₃ OH, NaO ₂ CH, e ⁻	s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—) CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ COCH ₃ (70) n-C ₆ H ₁₃ CO(CH ₂) ₂ CN (88)	129
i-C ₄ H ₉ CO(CH ₂) ₂ CH(NO ₂)C ₂ H ₅ s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃ CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ CH(NO ₂)CH ₃ n-C ₆ H ₁₃ CH(NO ₂)(CH ₂) ₂ CN 4-CH ₃ OC ₆ H ₄ CH—C(NO ₂)CH ₃	1. NaOH 2. KMnO ₄ 1. NaOH 2. KMnO ₄ 1. TiCl ₃ , NH ₄ OAc, H ₂ O 2. HO(CH ₂) ₂ OH CH ₃ OH, NaO ₂ CH, e ⁻ NaHPO ₂ , RaNi, H ⁺ 1. (n-C ₄ H ₂) ₃ SnH	s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—) CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ COCH ₃ (70)	129 158 193
s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃ CH ₂ =CH(CH ₂) ₃ CH=CHCH ₂ CH(NO ₂)CH ₃ n-C ₆ H ₁₃ CH(NO ₂)(CH ₂) ₂ CN 4-CH ₃ OC ₆ H ₄ CH=C(NO ₂)CH ₃	1. NaOH 2. KMnO ₄ 1. NaOH 2. KMnO ₄ 1. TiCl ₃ , NH ₄ OAc, H ₂ O 2. HO(CH ₂) ₂ OH CH ₃ OH, NaO ₂ CH, e ⁻ NaHPO ₂ , RaNi, H ⁺ 1. (n-C ₄ H ₉) ₃ SnH 2. O ₃	s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—) CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ COCH ₃ (70) n-C ₆ H ₁₃ CO(CH ₂) ₂ CN (88) 4-CH ₃ OC ₆ H ₄ CH ₂ COCH ₃ (92) " (95)	129 158 193 226 228a
s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃ CH ₂ =CH(CH ₂) ₃ CH=CHCH ₂ CH(NO ₂)CH ₃ n-C ₆ H ₁₃ CH(NO ₂)(CH ₂) ₂ CN 4-CH ₃ OC ₆ H ₄ CH=C(NO ₂)CH ₃	1. NaOH 2. KMnO ₄ 1. NaOH 2. KMnO ₄ 1. TiCl ₃ , NH ₄ OAc, H ₂ O 2. HO(CH ₂) ₂ OH CH ₃ OH, NaO ₂ CH, e ⁻ NaHPO ₂ , RaNi, H ⁺ 1. (n-C ₄ H ₂) ₃ SnH	s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—) CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ COCH ₃ (70) n-C ₆ H ₁₃ CO(CH ₂) ₂ CN (88) 4-CH ₃ OC ₆ H ₄ CH ₂ COCH ₃ (92)	129 158 193 226
s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃ CH ₂ =CH(CH ₂) ₃ CH=CHCH ₂ CH(NO ₂)CH ₃ n-C ₆ H ₁₅ CH(NO ₂)(CH ₂) ₂ CN 4-CH ₃ OC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ C ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ C ₆ H ₄ CH=C(NO ₂)CH ₃	1. NaOH 2. KMnO ₄ 1. NaOH 2. KMnO ₄ 1. TiCl ₃ , NH ₄ OAc, H ₂ O 2. HO(CH ₂) ₂ OH CH ₃ OH, NaO ₂ CH, e ⁻ NaHPO ₂ , RaNi, H ⁺ 1. (n-C ₄ H ₉) ₃ SnH 2. O ₃ 1. (n-C ₄ H ₉) ₃ SnH 2. MCPBA	s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—) CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ COCH ₃ (70) n-C ₆ H ₁₃ CO(CH ₂) ₂ CN (88) 4-CH ₃ OC ₆ H ₄ CH ₂ COCH ₃ (92) " (95) 4-CH ₃ C ₆ H ₄ CH ₂ COCH ₃ (99) 4-NCC ₆ H ₄ CH ₂ COCH ₃ (95)	129 158 193 226 228a 228a 228a
s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃ CH ₂ =CH(CH ₂) ₃ CH=CHCH ₂ CH(NO ₂)CH ₃ n-C ₆ H ₁₅ CH(NO ₂)(CH ₂) ₂ CN 4-CH ₃ OC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ C ₆ H ₄ CH=C(NO ₂)CH ₃ 4-NCC ₆ H ₄ CH=C(NO ₂)CH ₃	1. NaOH 2. KMnO ₄ 1. NaOH 2. KMnO ₄ 1. TiCl ₃ , NH ₄ OAc, H ₂ O 2. HO(CH ₂) ₂ OH CH ₃ OH, NaO ₂ CH, e ⁻ NaHPO ₂ , RaNi, H ⁺ 1. (n-C ₄ H ₉) ₃ SnH 2. O ₃ 1. (n-C ₄ H ₉) ₃ SnH 2. MCPBA " 1. NaOCH ₃	s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—) CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ COCH ₃ (70) n-C ₆ H ₁₃ CO(CH ₂) ₂ CN (88) 4-CH ₃ OC ₆ H ₄ CH ₂ COCH ₃ (92) " (95) 4-CH ₃ C ₆ H ₄ CH ₂ COCH ₃ (99)	129 158 193 226 228a 228a
s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃ CH ₂ =CH(CH ₂) ₃ CH=CHCH ₂ CH(NO ₂)CH ₃ n-C ₆ H ₁₃ CH(NO ₂)(CH ₂) ₂ CN 4-CH ₃ OC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ C ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ C ₆ H ₄ CH=C(NO ₂)CH ₃ CH ₃ CH=C(C ₆ H ₅)CH ₂ NO ₂	1. NaOH 2. KMnO ₄ 1. NaOH 2. KMnO ₄ 1. TiCl ₃ , NH ₄ OAc, H ₂ O 2. HO(CH ₂) ₂ OH CH ₃ OH, NaO ₂ CH, e ⁻ NaHPO ₂ , RaNi, H ⁺ 1. (n-C ₄ H ₉) ₃ SnH 2. O ₃ 1. (n-C ₄ H ₉) ₃ SnH 2. MCPBA	s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—) CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ COCH ₃ (70) n-C ₆ H ₁₃ CO(CH ₂) ₂ CN (88) 4-CH ₃ OC ₆ H ₄ CH ₂ COCH ₃ (92) " (95) 4-CH ₃ C ₆ H ₄ CH ₂ COCH ₃ (99) 4-NCC ₆ H ₄ CH ₂ COCH ₃ (95)	129 158 193 226 228a 228a 228a
s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃ CH ₂ =CH(CH ₂) ₃ CH=CHCH ₂ CH(NO ₂)CH ₃ n-C ₆ H ₁₃ CH(NO ₂)(CH ₂) ₂ CN 4-CH ₃ OC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ C ₆ H ₄ CH=C(NO ₂)CH ₃ 4-NCC ₆ H ₄ CH=C(NO ₂)CH ₃ CH ₃ CH=C(C ₆ H ₃)CH ₂ NO ₂ C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₃ NO ₂	1. NaOH 2. KMnO ₄ 1. NaOH 2. KMnO ₄ 1. TiCl ₃ , NH ₄ OAc, H ₂ O 2. HO(CH ₂) ₂ OH CH ₃ OH, NaO ₂ CH, e ⁻ NaHPO ₂ , RaNi, H ⁺ 1. (n-C ₄ H ₉) ₃ SnH 2. O ₃ 1. (n-C ₄ H ₉) ₃ SnH 2. MCPBA " 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. H ₂ SO ₄	s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—) CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ COCH ₃ (70) n-C ₆ H ₁₃ CO(CH ₂) ₂ CN (88) 4-CH ₃ OC ₆ H ₄ CH ₂ COCH ₃ (92) " (95) 4-CH ₃ C ₆ H ₄ CH ₂ COCH ₃ (99) 4-NCC ₆ H ₄ CH ₂ COCH ₃ (95) CH ₃ CH—C(C ₆ H ₃)CHO (51) C ₂ H ₅ CH—CH(CH ₂) ₂ CO(CH ₂) ₂ CHO (45)	129 158 193 226 228a 228a 228a 291
s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃ CH ₂ =CH(CH ₂) ₃ CH=CHCH ₂ CH(NO ₂)CH ₃ n-C ₆ H ₁₃ CH(NO ₂)(CH ₂) ₂ CN 4-CH ₃ OC ₆ H ₄ CH=C(NO ₂)CH ₃ 4-CH ₃ C ₆ H ₄ CH=C(NO ₂)CH ₃ 4-NCC ₆ H ₄ CH=C(NO ₂)CH ₃ CH ₃ CH=C(C ₆ H ₃)CH ₂ NO ₂ C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₃ NO ₂	1. NaOH 2. KMnO ₄ 1. NaOH 2. KMnO ₄ 1. TiCl ₃ , NH ₄ OAc, H ₂ O 2. HO(CH ₂) ₂ OH CH ₃ OH, NaO ₂ CH, e ⁻ NaHPO ₂ , RaNi, H ⁺ 1. (n-C ₄ H ₉) ₃ SnH 2. O ₃ 1. (n-C ₄ H ₉) ₃ SnH 2. MCPBA " 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. H ₂ SO ₄ 1. NaOH	s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—) CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ COCH ₃ (70) n-C ₆ H ₁₃ CO(CH ₂) ₂ CN (88) 4-CH ₃ OC ₆ H ₄ CH ₂ COCH ₃ (92) " (95) 4-CH ₃ C ₆ H ₄ CH ₂ COCH ₃ (99) 4-NCC ₆ H ₄ CH ₂ COCH ₃ (95) CH ₃ CH—C(C ₆ H ₅)CHO (51)	129 158 193 226 228a 228a 228a 228a 291
s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ CH(NO ₂)CH ₃ CH ₂ =CH(CH ₂) ₃ CH=CHCH ₂ CH(NO ₂)CH ₃ n-C ₆ H ₁₃ CH(NO ₂)(CH ₂) ₂ CN	1. NaOH 2. KMnO ₄ 1. NaOH 2. KMnO ₄ 1. TiCl ₃ , NH ₄ OAc, H ₂ O 2. HO(CH ₂) ₂ OH CH ₃ OH, NaO ₂ CH, e ⁻ NaHPO ₂ , RaNi, H ⁺ 1. (n-C ₄ H ₉) ₃ SnH 2. O ₃ 1. (n-C ₄ H ₉) ₃ SnH 2. MCPBA " 1. NaOCH ₃ 2. TiCl ₃ 1. NaOH 2. H ₂ SO ₄	s-C ₄ H ₉ CH ₂ CO(CH ₂) ₂ COCH ₃ (—) CH ₂ —CH(CH ₂) ₃ CH—CHCH ₂ COCH ₃ (70) n-C ₆ H ₁₃ CO(CH ₂) ₂ CN (88) 4-CH ₃ OC ₆ H ₄ CH ₂ COCH ₃ (92) " (95) 4-CH ₃ C ₆ H ₄ CH ₂ COCH ₃ (99) 4-NCC ₆ H ₄ CH ₂ COCH ₃ (95) CH ₃ CH—C(C ₆ H ₃)CHO (51) C ₂ H ₅ CH—CH(CH ₂) ₂ CO(CH ₂) ₂ CHO (45)	129 158 193 226 228a 228a 228a 291

٤	Ī	ì	ì	
ì		3	ì	
۰	•	•	•	

	TABLE I. NEF REACTION OF NITRO CO		D-C
Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
C ₆ H ₅ CH ₂ CH(NO ₂)C ₂ H ₅ 4-CH ₃ C ₆ H ₄ CH ₂ CH(NO ₂)CH ₃	1. NaOH, C ₂ H ₃ OH 2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂ 1. DBU, TMSCI	C ₆ H ₅ CH ₂ COC ₂ H ₅ (91) 4-CH ₃ C ₆ H ₄ CH ₂ COCH ₃ (99)	267 143b
4-CH ₃ OC ₆ H ₄ CH ₂ CH(NO ₂)CH ₃ 4-NCC ₆ H ₄ CH ₂ CH(NO ₂)CH ₃	2. MCPBA "	4-CH ₃ OC ₆ H ₄ CH ₂ COCH ₃ (97) 4-NCC ₆ H ₄ CH ₂ COCH ₃ (95)	143b 143b
C ₆ H ₃ CH(OCH ₃)CH(NO ₂)CH ₃ 3-O ₂ NC ₆ H ₄ CH(OCH ₃)CH(NO ₂)CH ₃ 3.4-(CH ₃ O) ₂ C ₆ H ₃ (CH ₂) ₂ NO ₂	", 1. NaOH, C ₂ H ₅ OH 2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂	C ₆ H ₃ CH(OCH ₃)COCH ₃ (95) 3-O ₂ NC ₆ H ₄ CH(OCH ₃)COCH ₃ (73) 3,4-(CH ₃ O) ₂ C ₆ H ₃ CH ₂ CHO (66)	143b 143b 267
$4\text{-CIC}_{5}H_{4}CH = C(NO_{2})C_{2}H_{5}$,, NaOCH ₃ , CH ₃ OH; TiCl ₃ , NH ₄ OAc CH ₂ =CHCH ₂ TMS, TiCl ₃ , CH ₃ O(CH ₂) ₂ OCH ₃	" (59) 4-CIC ₆ H ₂ CH(CH ₂ CH=CH ₂)COC ₂ H ₅ (55) " (49)	157 157 157
4-CH ₃ OC ₆ H ₄ CH=C(NO ₂)CH ₃	1. CH ₂ =CHCH ₂ TMS, AlCl ₃ 2. NaOCH ₃ , CH ₃ OH 3. TiCl ₃ , NH ₄ OAc	4-CH ₃ OC ₆ H ₄ CH(CH ₂ CH=CH ₂)COCH ₃ (48)	157
n	 CH₂=CHCH₂TMS, AlCl₃ TiCl₃, CH₃O(CH₂)₂OCH₃ 	" (59)	157
O NO ₂ (CH ₂) ₂ CH(OCH ₃) ₂	 NaOCH₃, CH₃OH TiCl₃, NaOAc 	CH3O2C(CH2)6CO(CH2)2CH(OCH3)2 (83)	315
	 (C₂H₅)₃N CAN, heat 	0 (81)	98
NO ₂	1. NaOCH ₃ 2. TiCl ₃ , NH ₄ OAc	" (88)	99
O NO ₂ (CH ₂) ₄ OH	1. KH, heat 2. dil HCl	0 (21) + 0 (5)	102
	1. OH⁻ 2. KMnO₄	NO ₂ (88)	123
C(CH ₃) ₂ CH ₂ NO ₂	1. NaOC ₄ H ₉ -t 2. KMnO ₄	CH ₂ O (81)	126, 127
CN CH ₂ CH(NO ₂)CH ₃ CO ₂ H	1. NaOCH ₃ , CH ₃ OH 2. TiCl ₃ , NH ₄ OAc 3. H ₃ O ⁺ 4. Ac ₂ O, H ⁺	CN (27)	308
NO ₂ CH ₂ NO ₂	 OH⁻ KMnO₄, borate buffer 	NO ₂ CHO (82)	132
~ ~	1. КОН	" (82)	318
CHCH(NO₂)CH₃ O	2. KMnO ₄ , Na ₂ B ₄ O ₇ 1. KOH 2. (CH ₃ O) ₂ SO ₂ , heat	CHCOCH₃ (55)	151
CHCH(NO ₂)CH ₃		СНСОСН3	

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	R	
100	1. NaOH	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	320	
/ F°	2. HCl	1 70		
Ch Ch(NO)C h		CH ₂ COC ₂ H ₅		
CH ₂ CH(NO ₂)C ₂ H ₅	1 (CH) N	5 37,850	261	
CH(NO ₂)CH ₃	1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ *MnO ₄ *	COCH ₃ (67)	201	
CH ₂ CH=CH ₂	2. 016213311(0113)3 111104	CH ₂ CH=CH ₂		
4-NCC ₆ H ₄ C(CH ₃) ₂ CH ₂ NO ₂	1. NaOC₄H ₉ -t	4-NCC ₆ H ₄ C(CH ₃) ₂ CHO (83)	126	
4-NCC6H1C(CH3)2CH2NO2	2. KMnO ₄	4-NCC6H4C(CH3)2CHO (83)	120	
4-CH ₃ OC ₆ H ₄ CH(CH ₂ NO ₂)CH ₂ CN	1. NaOCH ₃ , CH ₃ OH	4-CH ₃ OC ₆ H ₄ CH(CHO)CH ₂ CN (60)	38	
	2. H ₂ SO ₄ , CH ₃ OH	to the test of the second of t		
	3. HCl, H₂O			
C ₆ H ₅ CO(CH ₂) ₂ CH(NO ₂)CH ₃	1. NaOH	$C_6H_5CO(CH_2)_2COCH_3$ (—)	130	
	2. H ₃ O+ 1. NaOH	" (—)	130	
	2. KMnO ₄ , MgSO ₄	" (—)	150	
	Silica gel, KMnO ₄	" (86)	202	
4-BrC ₆ H ₄ COCH=CHCH(NO ₂)CH ₃	1. KOH	4-BrC ₆ H ₄ COCH=CHCOCH ₃ (85)	151	
	2. (CH ₃ O) ₂ SO ₂ , heat		340.725CF	
4-BrC ₆ H ₄ COCH=CHC(CH ₃)=NO ₂ Na	Silica gel, CH ₃ OH	4-BrC ₆ H ₄ COCH=CHCOCH ₃ (57)	152	
	(NH ₄) ₂ S ₂ O ₈ Ascorbic acid, HCl	" (31) " (36)	152 152	
C ₆ H ₅ COCH=CHCH(NO ₂)CH ₃	1. KOH	C ₆ H ₅ COCH=CHCOCH ₃ (85)	151	
	2. (CH ₃ O) ₂ SO ₂ , heat			
C ₆ H ₅ COCH=CHC(CH ₃)=NO ₂ Na	Silica gel, CH ₃ OH	" (64)	152	
	$(NH_4)_2S_2O_8$	" (21)	152	
A O NG U COCH CUC/CU \ NO No	Ascorbic acid, HCl	" (37)	152	
4-O ₂ NC ₆ H ₄ COCH=CHC(CH ₃)=NO ₂ Na	Silica gel, CH ₃ OH Ascorbic acid, HCl	4-O ₂ NC ₆ H ₄ COCH=CHCOCH ₃ (21) " (8)	152 152	
CH ₃ CO(CH ₂) ₂ CH(NO ₂)C ₆ H ₁₃ -n	Silica gel, NaOCH ₃	$CH_3CO(CH_2)_2COC_6H_{13}-n$ (80)	200	
	Silica gel, KMnO ₄	" (40)	203	
	1. NaOH, C₂H₅OH	" (—)	321	
	1. NaOH, C₂H₅OH 2. H⁺	()	321	
	2. H ⁺ 1. (C ₂ H ₅) ₃ N	" (—) " (64)		
	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ MnO ₄	" (64)	26	
C2H3CH=CH(CH2)2CO(CH2)2CH(NO2)-	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ 1. NaOH	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃	261	
CH,	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃); MnO ₄ 1. NaOH 2. H ₂ SO ₄	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72)	261 319	
	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ 1. NaOH	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃	261 319	
CH,	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃); MnO ₄ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72)	261 319 127	
CH,	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₇ MnO ₄ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59) " (50)	261 319 127 131	
CH,	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59)	261 319 127 131	
CH3 CH2=CH(CH2)\$NO2	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59) " (50) " (66)	261 319 127 131 261	
CH,	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59) " (50)	261 319 127 131 261	
CH ₃ CH ₂ —CH(CH ₂) ₅ NO ₂ C ₆ H ₅ (CH ₂) ₅ NO ₂	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59) " (50) " (66) C ₆ H ₅ (CH ₂) ₄ CH(OCH ₃) ₂ (—)	261 319 127 131 261 182	
CH ₃ CH ₂ —CH(CH ₂) ₅ NO ₂ C ₆ H ₅ (CH ₂) ₅ NO ₂ OHCC(C ₆ H ₅)—CHC(CH ₃)—NO ₂ Na	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59) " (50) " (66)	261 319 127 131 261 182	
CH ₃ CH ₂ —CH(CH ₂) ₅ NO ₂ C ₆ H ₅ (CH ₂) ₅ NO ₂	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺	" (64) $C_2H_3CH=CH(CH_2)_2CO(CH_2)_2COCH_3$ $CH_2=CH(CH_2)_8CHO$ (59) " (50) " (66) $C_6H_5(CH_2)_4CH(OCH_3)_2$ (—) $OHCC(C_6H_5)=CHCOCH_3$ (46) $C_2H_3C=C(CH_2)_2CO(CH_2)_2COCH_3$ (85) $C_6H_5CH_2CH=CHCOCH_3$ (64)	261 319 127 131 261 182 152 153 226	
CH ₃ CH ₂ =CH(CH ₂) ₅ NO ₂ $C_6H_5(CH_2)_5NO_2$ OHCC(C_6H_5)=CHC(CH ₃)=NO ₂ Na C_2H_5C =C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺ 1. NaOH, C ₂ H ₅ OH	" (64) $C_2H_3CH=CH(CH_2)_2CO(CH_2)_2COCH_3$ $CH_2=CH(CH_2)_8CHO$ (59) " (50) " (66) $C_6H_5(CH_2)_4CH(OCH_3)_2$ (—) $OHCC(C_6H_5)=CHCOCH_3$ (46) $C_2H_3C=C(CH_2)_2CO(CH_2)_2COCH_3$ (85)	261 319 127 131 261 182 152 153 226	
CH ₃ CH ₂ =CH(CH ₂) ₅ NO ₂ $C_6H_5(CH_2)_5NO_2$ OHCC(C_6H_5)=CHC(CH ₃)=NO ₂ Na C_2H_5C =C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃ C_6H_5CH =CHCH=C(NO ₂)CH ₃ C_6H_5CH 2CH(NO ₂) C_3H_7 - n	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺ 1. NaOH, C ₂ H ₅ OH 2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂	" (64) $C_2H_3CH=CH(CH_2)_2CO(CH_2)_2COCH_3$ $CH_2=CH(CH_2)_8CHO$ (59) " (50) " (66) $C_6H_3(CH_2)_4CH(OCH_3)_2$ (—) $OHCC(C_6H_5)=CHCOCH_3$ (46) $C_7H_5C=C(CH_2)_2CO(CH_2)_2COCH_3$ (85) $C_6H_3CH_2CH=CHCOCH_3$ (64) $C_6H_3CH_2COC_3H_7-n$ (93)	261 319 127 131 261 182 152 153 226 267	
CH ₃ CH ₂ =CH(CH ₂) ₅ NO ₂ $C_6H_5(CH_2)_5NO_2$ OHCC(C_6H_5)=CHC(CH ₃)=NO ₂ Na C_2H_5C =C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃ C_6H_5CH =CHCH=C(NO ₂)CH ₃	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺ 1. NaOH, C ₂ H ₅ OH 2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂ 1. DBU, TMSCl	" (64) $C_2H_3CH=CH(CH_2)_2CO(CH_2)_2COCH_3$ $CH_2=CH(CH_2)_8CHO$ (59) " (50) " (66) $C_6H_5(CH_2)_4CH(OCH_3)_2$ (—) $OHCC(C_6H_5)=CHCOCH_3$ (46) $C_2H_3C=C(CH_2)_2CO(CH_2)_2COCH_3$ (85) $C_6H_5CH_2CH=CHCOCH_3$ (64)	261 319 127 131 261 182 152 153 226 267	
CH ₃ CH ₂ =CH(CH ₂) ₅ NO ₂ C ₆ H ₅ (CH ₂) ₅ NO ₂ OHCC(C ₆ H ₅)=CHC(CH ₃)=NO ₂ Na C ₂ H ₅ C=C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃ C ₆ H ₅ CH=CHCH=C(NO ₂)CH ₃ C ₆ H ₅ CH ₂ CH(NO ₂)C ₃ H ₇ - n C ₆ H ₅ CH(CH ₂ CO ₂ CH ₃)CH(NO ₂)CH ₃	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺ 1. NaOH, C ₂ H ₅ OH 2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂ 1. DBU, TMSCl 2. MCPBA	" (64) $C_2H_3CH=CH(CH_2)_2CO(CH_2)_2COCH_3$ $CH_2=CH(CH_2)_8CHO$ (59) " (50) " (66) $C_6H_3(CH_2)_4CH(OCH_3)_2$ (—) $OHCC(C_6H_5)=CHCOCH_3$ (46) $C_2H_3C=C(CH_2)_2CO(CH_2)_2COCH_3$ (85) $C_6H_3CH_2CH=CHCOCH_3$ (64) $C_6H_3CH_2COC_3H_7-n$ (93) $C_6H_3CH(CH_2CO_2CH_3)COCH_3$ (70)	261 319 127 131 261 182 152 153 226 267 143	
CH ₃ CH ₂ =CH(CH ₂) ₅ NO ₂ $C_6H_5(CH_2)_5NO_2$ OHCC(C_6H_5)=CHC(CH ₃)=NO ₂ Na C_2H_5C =C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃ C_6H_5CH =CHCH=C(NO ₂)CH ₃ C_6H_5CH 2CH(NO ₂) C_3H_7 - n	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺ 1. NaOH, C ₂ H ₅ OH 2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂ 1. DBU, TMSCl	" (64) $C_2H_3CH=CH(CH_2)_2CO(CH_2)_2COCH_3$ $CH_2=CH(CH_2)_8CHO$ (59) " (50) " (66) $C_6H_3(CH_2)_4CH(OCH_3)_2$ (—) $OHCC(C_6H_5)=CHCOCH_3$ (46) $C_7H_5C=C(CH_2)_2CO(CH_2)_2COCH_3$ (85) $C_6H_3CH_2CH=CHCOCH_3$ (64) $C_6H_3CH_2COC_3H_7-n$ (93)	261 319 127 131 261 182 152 153 226 267 143	
CH ₃ CH ₂ =CH(CH ₂) ₅ NO ₂ C ₆ H ₅ (CH ₂) ₅ NO ₂ OHCC(C ₆ H ₅)=CHC(CH ₃)=NO ₂ Na C ₂ H ₅ C=C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃ C ₆ H ₅ CH=CHCH=C(NO ₂)CH ₃ C ₆ H ₅ CH ₂ CH(NO ₂)C ₃ H ₇ - n C ₆ H ₅ CH(CH ₂ CO ₂ CH ₃)CH(NO ₂)CH ₃ CH ₃ CH(NO ₂)CH(C ₆ H ₅)CH ₂ CO ₂ CH ₃ n -C ₇ H ₁₅ CH(NO ₂)(CH ₂) ₂ CO ₂ C ₄ H ₅	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺ 1. NaOH, C ₂ H ₃ OH 2. H ₂ SO ₄ , H ₂ O, C ₃ H ₁₂ 1. DBU, TMSCl 2. MCPBA (n-C ₄ H ₉) ₄ N ⁺ Br ⁻ , CH ₃ CN, O ₂ , e ⁻ C ₂ H ₅ OH, NaOCH ₃ , e ⁻	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59) " (50) " (66) C ₆ H ₃ (CH ₂) ₄ CH(OCH ₃) ₂ (—) OHCC(C ₆ H ₅)=CHCOCH ₃ (46) C ₇ H ₅ C=C(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (85) C ₆ H ₃ CH ₂ CH=CHCOCH ₃ (64) C ₆ H ₃ CH ₂ COC ₃ H ₇ -n (93) C ₆ H ₃ CH(CH ₂ CO ₂ CH ₃)COCH ₃ (70) CH ₃ COCH(C ₆ H ₅)CH ₂ CO ₂ CH ₂ (68) n-C ₇ H ₁₅ CO(CH ₂) ₂ CO ₂ C ₂ H ₅ (72)	261 319 127 131 261 182 152 153 226 267 143 194	
CH ₃ CH ₂ =CH(CH ₂) ₅ NO ₂ C ₆ H ₅ (CH ₂) ₅ NO ₂ OHCC(C ₆ H ₅)=CHC(CH ₃)=NO ₂ Na C ₂ H ₅ C=C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃ C ₆ H ₅ CH=CHCH=C(NO ₂)CH ₃ C ₆ H ₅ CH ₂ CH(NO ₂)C ₃ H ₇ - n C ₆ H ₅ CH(CH ₂ CO ₂ CH ₃)CH(NO ₂)CH ₃ CH ₃ CH(NO ₂)CH(C ₆ H ₅)CH ₂ CO ₂ CH ₃ n -C ₇ H ₁₅ CH(NO ₂)(CH ₂) ₂ CO ₂ C ₂ H ₅ CH ₃ CONHC(CO ₂ C ₂ H ₅) ₂ (CH ₂) ₂ CH-	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺ 1. NaOH, C ₂ H ₅ OH 2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂ 1. DBU, TMSCl 2. MCPBA (n-C ₄ H ₉) ₄ N ⁺ Br ⁻ , CH ₃ CN, O ₂ , e ⁻ C ₂ H ₅ OH, NaOCH ₃ , e ⁻ 1. NaOH	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59) " (50) " (66) C ₆ H ₃ (CH ₂) ₄ CH(OCH ₃) ₂ (—) OHCC(C ₆ H ₅)=CHCOCH ₃ (46) C ₇ H ₅ C=C(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (85) C ₆ H ₅ CH ₂ CH=CHCOCH ₃ (64) C ₆ H ₅ CH ₂ COC ₃ H ₇ -n (93) C ₆ H ₅ CH(CH ₂ CO ₂ CH ₃)COCH ₃ (70) CH ₃ COCH(C ₆ H ₅)CH ₂ CO ₂ CH ₂ (68) n-C ₇ H ₁₅ CO(CH ₂) ₂ CO ₂ C ₂ H ₅ (72) CH ₃ CONHC(CO ₂ C ₂ H ₅) ₂ (CH ₂) ₂ CH(CHO)-	261 319 127 131 261 182 152 153 226 267 143 194	
CH ₃ CH ₂ =CH(CH ₂) ₅ NO ₂ C ₆ H ₅ (CH ₂) ₅ NO ₂ OHCC(C ₆ H ₅)=CHC(CH ₃)=NO ₂ Na C ₂ H ₅ C=C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃ C ₆ H ₅ CH=CHCH=C(NO ₂)CH ₃ C ₆ H ₅ CH ₂ CH(NO ₂)C ₃ H ₇ - n C ₆ H ₅ CH(CH ₂ CO ₂ CH ₃)CH(NO ₂)CH ₃ CH ₃ CH(NO ₂)CH(C ₆ H ₅)CH ₂ CO ₂ CH ₃ n -C ₇ H ₁₅ CH(NO ₂)(CH ₂) ₂ CO ₂ C ₂ H ₅ CH ₃ CONHC(CO ₂ C ₂ H ₅) ₂ (CH ₂) ₂ CH-(CH ₂ NO ₂)O ₂ CCH ₃	2. H ⁺ 1. (C ₂ H ₃) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₃) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺ 1. NaOH, C ₂ H ₃ OH 2. H ₂ SO ₄ , H ₂ O, C ₃ H ₁₂ 1. DBU, TMSCl 2. MCPBA (n-C ₄ H ₉) ₄ N ⁺ Br ⁻ , CH ₃ CN, O ₂ , e ⁻ C ₂ H ₅ OH, NaOCH ₃ , e ⁻ 1. NaOH 2. H ₂ SO ₄	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59) " (50) " (66) C ₆ H ₃ (CH ₂) ₄ CH(OCH ₃) ₂ (—) OHCC(C ₆ H ₅)=CHCOCH ₃ (46) C ₇ H ₅ C=C(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (85) C ₆ H ₃ CH ₂ CH=CHCOCH ₃ (64) C ₆ H ₃ CH ₂ COC ₃ H ₇ -n (93) C ₆ H ₃ CH(CH ₂ CO ₂ CH ₃)COCH ₃ (70) CH ₃ COCH(C ₆ H ₅)CH ₂ CO ₂ CH ₂ (68) n-C ₇ H ₁₅ CO(CH ₂) ₂ CO ₂ C ₂ H ₅ (72) CH ₃ CONHC(CO ₂ C ₂ H ₅) ₂ (CH ₂) ₂ CH(CHO)-O ₂ CCH ₃ (—)	261 319 127 131 261 182 152 153 226 267 143 194	
CH ₃ CH ₂ =CH(CH ₂) ₅ NO ₂ C ₆ H ₅ (CH ₂) ₅ NO ₂ OHCC(C ₆ H ₅)=CHC(CH ₃)=NO ₂ Na C ₂ H ₅ C=C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃ C ₆ H ₅ CH=CHCH=C(NO ₂)CH ₃ C ₆ H ₅ CH ₂ CH(NO ₂)C ₃ H ₇ - n C ₆ H ₅ CH(CH ₂ CO ₂ CH ₃)CH(NO ₂)CH ₃ CH ₃ CH(NO ₂)CH(C ₆ H ₅)CH ₂ CO ₂ CH ₃ n -C ₇ H ₁₅ CH(NO ₂)(CH ₂) ₂ CO ₂ C ₂ H ₅ CH ₃ CONHC(CO ₂ C ₂ H ₅) ₂ (CH ₂) ₂ CH-	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺ 1. NaOH, C ₂ H ₅ OH 2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂ 1. DBU, TMSCl 2. MCPBA (n-C ₄ H ₉) ₄ N ⁺ Br ⁻ , CH ₃ CN, O ₂ , e ⁻ C ₂ H ₅ OH, NaOCH ₃ , e ⁻ 1. NaOH	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59) " (50) " (66) C ₆ H ₃ (CH ₂) ₄ CH(OCH ₃) ₂ (—) OHCC(C ₆ H ₅)=CHCOCH ₃ (46) C ₇ H ₅ C=C(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (85) C ₆ H ₅ CH ₂ CH=CHCOCH ₃ (64) C ₆ H ₅ CH ₂ COC ₃ H ₇ -n (93) C ₆ H ₅ CH(CH ₂ CO ₂ CH ₃)COCH ₃ (70) CH ₃ COCH(C ₆ H ₅)CH ₂ CO ₂ CH ₂ (68) n-C ₇ H ₁₅ CO(CH ₂) ₂ CO ₂ C ₂ H ₅ (72) CH ₃ CONHC(CO ₂ C ₂ H ₅) ₂ (CH ₂) ₂ CH(CHO)-	261 319 127 131 261 182 152 153 226 267 143 194	
CH ₃ CH ₂ =CH(CH ₂) ₅ NO ₂ C ₆ H ₅ (CH ₂) ₅ NO ₂ OHCC(C ₆ H ₅)=CHC(CH ₃)=NO ₂ Na C ₂ H ₅ C=C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃ C ₆ H ₅ CH=CHCH=C(NO ₂)CH ₃ C ₆ H ₅ CH ₂ CH(NO ₂)C ₃ H ₇ - n C ₆ H ₅ CH(CH ₂ CO ₂ CH ₃)CH(NO ₂)CH ₃ CH ₃ CH(NO ₂)CH(C ₆ H ₅)CH ₂ CO ₂ CH ₃ n -C ₇ H ₁₅ CH(NO ₂)(CH ₂) ₂ CO ₂ C ₂ H ₅ CH ₃ CONHC(CO ₂ C ₂ H ₅) ₂ (CH ₂) ₂ CH-(CH ₂ NO ₂)O ₂ CCH ₃	2. H ⁺ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₅) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺ 1. NaOH, C ₂ H ₅ OH 2. H ₂ SO ₄ , H ₂ O, C ₅ H ₁₂ 1. DBU, TMSCl 2. MCPBA (n-C ₄ H ₉) ₄ N ⁺ Br ⁻ , CH ₃ CN, O ₂ , e ⁻ C ₂ H ₅ OH, NaOCH ₃ , e ⁻ 1. NaOH 2. H ₂ SO ₄ O, O ₃	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59) " (50) " (66) C ₆ H ₅ (CH ₂) ₄ CH(OCH ₃) ₂ (—) OHCC(C ₆ H ₅)=CHCOCH ₃ (46) C ₇ H ₅ C=C(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (85) C ₆ H ₅ CH ₂ CH=CHCOCH ₃ (64) C ₆ H ₅ CH ₂ COC ₃ H ₇ -n (93) C ₆ H ₅ CH(CH ₂ COC ₂ CH ₃)COCH ₃ (70) CH ₃ COCH(C ₆ H ₅)CH ₂ CO ₂ CH ₂ (68) n-C ₇ H ₁₅ CO(CH ₂) ₂ CO ₂ C ₂ H ₅ (72) CH ₃ CONHC(CO ₂ C ₂ H ₅) ₂ (CH ₂) ₂ CH(CHO)-O ₂ CCH ₃ (—) (46)	321 261 319 127 131 261 182 153 226 267 143 194 193 322 313	
CH ₃ CH ₂ =CH(CH ₂) ₅ NO ₂ C ₆ H ₅ (CH ₂) ₅ NO ₂ OHCC(C ₆ H ₅)=CHC(CH ₃)=NO ₂ Na C ₂ H ₅ C=C(CH ₂) ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃ C ₆ H ₅ CH=CHCH=C(NO ₂)CH ₃ C ₆ H ₅ CH ₂ CH(NO ₂)C ₃ H ₇ - n C ₆ H ₅ CH(CH ₂ CO ₂ CH ₃)CH(NO ₂)CH ₃ CH ₃ CH(NO ₂)CH(C ₆ H ₅)CH ₂ CO ₂ CH ₃ n -C ₇ H ₁₅ CH(NO ₂)(CH ₂) ₂ CO ₂ C ₂ H ₅ CH ₃ CONHC(CO ₂ C ₂ H ₅) ₂ (CH ₂) ₂ CH-(CH ₂ NO ₂)O ₂ CCH ₃	2. H ⁺ 1. (C ₂ H ₃) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. NaOH 2. H ₂ SO ₄ 1. NaOC ₄ H ₉ -t 2. KMnO ₄ 1. KOH, CH ₃ OH 2. KMnO ₄ , MgSO ₄ 1. (C ₂ H ₃) ₃ N 2. C ₁₆ H ₃₃ N(CH ₃) ₃ ⁺ MnO ₄ ⁻ 1. ZnCl ₂ , HCl 2. CH ₃ OH, H ⁺ Silica gel, CH ₃ OH TiCl ₃ , H ₂ O NaH ₂ PO ₂ , RaNi, H ⁺ 1. NaOH, C ₂ H ₃ OH 2. H ₂ SO ₄ , H ₂ O, C ₃ H ₁₂ 1. DBU, TMSCl 2. MCPBA (n-C ₄ H ₉) ₄ N ⁺ Br ⁻ , CH ₃ CN, O ₂ , e ⁻ C ₂ H ₅ OH, NaOCH ₃ , e ⁻ 1. NaOH 2. H ₂ SO ₄	" (64) C ₂ H ₃ CH=CH(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (72) CH ₂ =CH(CH ₂) ₈ CHO (59) " (50) " (66) C ₆ H ₃ (CH ₂) ₄ CH(OCH ₃) ₂ (—) OHCC(C ₆ H ₅)=CHCOCH ₃ (46) C ₇ H ₅ C=C(CH ₂) ₂ CO(CH ₂) ₂ COCH ₃ (85) C ₆ H ₃ CH ₂ CH=CHCOCH ₃ (64) C ₆ H ₃ CH ₂ COC ₃ H ₇ -n (93) C ₆ H ₃ CH(CH ₂ CO ₂ CH ₃)COCH ₃ (70) CH ₃ COCH(C ₆ H ₅)CH ₂ CO ₂ CH ₂ (68) n-C ₇ H ₁₅ CO(CH ₂) ₂ CO ₂ C ₂ H ₅ (72) CH ₃ CONHC(CO ₂ C ₂ H ₅) ₂ (CH ₂) ₂ CH(CHO)-O ₂ CCH ₃ (—)	261 319 127 131 261 182 152 153 226 267 143 194 193 322	

Product(s) and Yield(s) (%)

O (91)

 $HO_2C(CH_2)_{10}CO_2H$ (92)

Refs.

127

266a

Reagents

1. NaOC4H9-t

H₂O₂, K₂CO₃, CH₃OH

2. KMnO₄

C₁₂

Nitro Compound

759

NO₂

	ABLE I. Nef Reaction of Nitro		
Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
	KOH, (NH ₄) ₂ S ₂ O ₈ 1. KOH	" (72) " (90)	150 329
	2. Air		
	hν, CH ₃ OH or t-C ₄ H ₉ OH	" (62%) +) 244
	1 80011	NOH	127
	 KOC₂H₅ Air 	(-) 137
Br		Br	
NO ₂	1. NaOH	O (71-D)	292
C ₆ H ₅	2. HCl	C ₆ H ₅	272
\sim			
NO ₂	1. NaOC ₂ H ₅ , C ₂ H ₅ OH	(87)	325
	2. HCl	1	323
CH₃OC ₆ H₄		3-CH ₃ OC ₆ H ₄	
NO ₂	39	(88)	325
GI GO II			
-CH ₃ OC ₆ H ₄ NO ₂		4-CH ₃ OC ₆ H ₄	
+	"		(15) 326
6H5		C ₆ H ₅	
NO ₂ C ₆ H ₅		C ₆ H ₅	
NO ₂		ö	
	"	(35)	326
		<u> </u>	520
sH ₅ NO ₂		C6H3	
\(\sigma_1\)	"	(33)	326
C ₆ H ₅		C ₆ H ₅	
NO ₂		0	
ocH₃	1. NaOH	OCH ₃ (70)	328
	2. HCl		
H ₃ O CH(NO ₂)CH(CH ₃)CH ₂ CN		CH ₃ O COCH(CH ₃)CH ₂ CO ₂ H	
CH ₃) ₂ NCOCH ₂ CH(CH ₂ NO ₂)C ₆ H ₄ OCH ₃ -4		(CH ₃) ₂ NCOCH ₂ CH[CH(OCH ₃) ₂]-	330
26H3C(CH3)2C(CH3)2CH2NO2	 H₂SO₄, CH₃OH NaOC₄H₂-t 	C ₆ H ₄ OCH ₃ -4 (15) C ₆ H ₅ C(CH ₃) ₂ C(CH ₃) ₂ CHO (88)	126, 127
	2. KMnO ₄		130
H ₃ COCH ₂ CH(C ₆ H ₅)CH(NO ₂)C ₂ H ₅	1. NaOH 2. H ₃ O+	CH ₃ COCH ₂ CH(C ₆ H ₅)COC ₂ H ₅ (—)	
	1. NaOH	" (—)	130
·CH ₃ C ₆ H ₄ CH ₂ CH(NO ₂)(CH ₂) ₂ COCH ₃	 KMnO₄, MgSO₄ LiOCH₃ 	4-CH ₃ C ₆ H ₄ CH ₂ CO(CH ₂) ₂ COCH ₃ (85)	331
	2. KMnO ₄ , buffer		291
CH ₂ NO ₂	 NaOCH₃ TiCl₃ 	CHO (79)	291
	1 HE Do	(92)	142
(CH ₂) ₂ CH=C(NO ₂)SC ₆ H ₅	 HF, Py KOC₄H₀-t 	(83)	143
$(CH_2)_2CH = C(NO_2)SC_6H_5$		of N	143
	2. KOC₄H₀-t	COSC ₆ H ₅ (83)	143 143a

СНО

CH₂NO₂

Refs.

335

335, 336

337

337

325

337

325

338

332

332

NO₂

(<1)

(-)

(n-C₄H₉)₄N+F-

TABLE I. NEF REACTION OF NITRO COMPOUNDS (Continued)					
Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.		
NO ₂	H ₂ O ₂ , K ₂ CO ₃ , CH ₃ OH	+ O	266a		
	1. NaOC ₂ H ₅ , C ₂ H ₅ OH 2. HCl	(69)	326		
4-CH ₃ OC ₆ H ₄ NO ₂ 4-CH ₃ OC ₆ H ₄ NO ₂		4-CH ₃ OC ₆ H ₄ 4-CH ₃ OC ₆ H ₄ + 4-CH ₃ OC ₆ H ₄ (99 total)	326		
O CH[CH ₂ CON(CH ₃) ₂ CH(NO ₂)CH ₃	NaNO ₂ , n-C ₃ H ₇ ONO, DMSO	OCHICH ₂ CON(CH ₃) ₂ COCH ₃) 198		
(CH ₂) ₃ CH=C(NO ₂)SC ₆ H ₅ TBDMS	1. HF, Py 2. KOC ₄ H ₉ -t 3. O ₃	(53)	143		
OC(CH ₃) ₂ CH=C(NO ₂)SC ₆ H ₅	1. n-(C ₄ H ₉) ₄ N ⁺ F ⁻ 2. O ₃	COSC ₆ H ₅ (83)	143a		
O TBDMS OC(CH ₃) ₂ CH=C(NO ₂)SC ₆ H ₅ TBDMS	1. n-(C₄H ₉)₄N+F⁻ 2. O ₃	COSC ₆ H ₅ (79)	143a		
OCH ₂ COH[CH ₂ OTBDMS]C=C(NO ₂)S TBDMS	C ₆ H ₅ 1. n-(C ₄ H ₉) ₄ N+F- 2. O ₃	COSC ₆ H ₅ OH CH ₂ OTBDMS	143a		
OC(CH ₃) ₂ CH=C(NO ₂)SC ₆ H ₅ TBDMS	1. HF, Py 2. KOC ₄ H ₉ -t 3. O ₃	$COSC_6H_5$ $COSC_6H_5$ $COSC_6H_5$	143		
$3,4,5-(CH_3O)_3C_6H_2COCH=CH-C(CH_3)=NO_2Na$	Silica gel, CH ₃ OH	3,4,5- (CH ₃ O) ₃ C ₆ H ₂ COCH=CHCOCH ₃ (58)	152		
C ₆ H ₃ COC(CO ₂ C ₂ H ₅)=CHC(CH ₃)=NO ₂ Na O O O O O O O O O O O O O O O O O O O	(NH ₄) ₂ S ₂ O ₈ Silica gel, CH ₃ OH 1. Py, Ac ₂ O, heat 2. Ice 3. dil HCl	" (39) C ₈ H ₅ COC(CO ₂ C ₂ H ₅)=CHCOCH ₃ (-) (49) OAc	152 152 101		

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
C ₁₇ CH ₂ CO ₂ CH ₃	1. NaOCH ₃ , CH ₃ OH	CH ₂ CO ₂ CH ₃ (78)	33
(CH ₂) ₂ NO ₂	2. H ₂ SO ₄	CH ₂ CHO	
COC ₆ H ₅		COC ₆ H ₅	
CH ₂ CH(NO ₂)C ₆ H ₄ OCH ₃ -4	1. NaOCH3, CH3OH	$C_6H_4OCH_3-4$ (20)	308
	 TiCl₃, NH₄OAc H₃O⁺ 		
CO₂H CH₃O	4. Ac ₂ O, H ⁺	CH ₃ O O	
C1130	1. NaOH	" (79)	308
	2. H ₂ SO ₄ , CH ₃ OH		
	 Ac₂O, H⁺ KOH, C₂H₅OH 	(17)	340
	2. HCl or H ₂ SO ₄		
NO ₂		10	
	 KOH, H₂O, CH₃OH HCI 	" (4)	13
	z. HCI	+ (32)	
		NOH	
C ₆ H ₅ COCH(C ₆ H ₅)CH ₂ CH(NO ₂)CH ₃ C ₆ H ₅ COCH ₂ CH(C ₆ H ₅)CH(NO ₂)CH ₃	KMnO ₄ , silica gel KMnO ₄ , silica gel	C ₆ H ₃ COCH(C ₆ H ₅)CH ₂ COCH ₃ (91) C ₆ H ₃ COCH ₂ CH(C ₆ H ₅)COCH ₃ (87)	202, 203 202, 203
0,11,00011,011,011,011,011,011,011,011,	All Mod, Saled Box		202, 200
	TiCl ₃ (excess)	n-C ₁₆ H ₃₃ CO ₂ H (100)	229
n-C ₁₆ H ₃₃ CH(NO ₂)S N			
525 521 197	TiCl ₃	n-C ₁₆ H ₃₃ CHO (70)	
CH ₂ CO ₂ CH ₃ (CH ₂) ₂ NO ₂	 NaOCH₃, CH₃OH H₂SO₄ 	CH ₂ CO ₂ CH ₃ (—) CH ₂ CH(OCH ₃) ₂	
(ci.pg.tog			
NC N	20	NC N	
COC_6H_5 $CH_3C(NO_2)$ C_6H_5	1. (n-C ₄ H ₉) ₃ SnH	COC_6H_5 $CH_3CO C_6H_5$ (84)	341
Caris	2. O ₃ , DMS	Cingeo Cang (cv)	541
O C ₆ H ₅		O C ₆ H ₅	
0	NaNO2, n-C3H7ONO, DMSO	0 (90)	198
s		s o	
O CHCH ₂ NO ₂		O CHCO₂H	
0		0	
	1. NaOCH ₃ 2. TiCl ₃ , NaOAc	(81)	262
CH ₃ O ₂ C		CH ₃ O ₂ C	
0~~~		020	
NO ₂		0	7222
C ₆ H ₅ COCH ₂ CH(C ₆ H ₅)CH(NO ₂)C ₂ H ₅	1. NaOH 2. H ₃ O+	$C_6H_5COCH_2CH(C_6H_5)COC_2H_5$ (—)	130
	1. NaOH	" (—)	130
	2. KMnO ₄ , MgSO ₄ KMnO ₄ , silica gel	" (83)	202, 203
		3 2	

TABLE I. NEF REACTION OF NITRO COMPOUNDS (Continued)						
Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.			
HO NO ₂	CrCl ₃ , HCl, Zn	C ₈ H ₁₇ (17)	174			
C ₈ H ₁₇	CrCl ₃ , HCl, Zn	C ₈ H ₁₇ (97)	174			
O NO ₂ C ₈ H ₁₇	CrCl ₃ , HCl, Zn	C ₈ H ₁₇ (100)	174			
HO HO NO2	NaOC ₂ H ₅ , hν	HO H O H O H	239			
O_2N H C_8H_{17}	NaOC ₂ H ₅ , hν	C ₈ H ₁₇ (18) C ₈ H ₁₇ (16) + (22)	239			
S H	TMBG, MIBA	C ₈ H ₁₇ (89)	149			
AcO H NO ₂	TMBG, MIBA	AcO H (95)	149			
H I NO ₂	1. (n-C ₄ H ₉) ₃ P, (C ₆ H ₅ S) ₂ 2. H ₂ O	H II " (55)	175			

TABLE I. NEF REACTION OF NITRO COMPOUNDS (Continued)

Nitro Compound	Reagents	Product(s) and Yield(s) (%)	Refs.
AcO H C8H17	CrCl ₃ , HCl, Zn	AcO H (75)	174
AcO H C8H17	NaHPO₂, Ra Ni, H ⁺	AcO H (52)	226
CH(CH ₃)CH(NO ₂)	(CH ₂) ₂ CH(CH ₃)CH ₂ OAc 1. NaBH ₄ , C ₂ H ₅ OH 2. HCl	HO (86)	347, 348
	1. NaOH 2. H ₂ SO ₄ or KMnO ₄	CH(CH ₃)CO(CH ₂) ₂ CH (20)	
HO CH(CH ₃)CH(NO ₂)(CH ₂) ₂ CH(CH ₂ OAc) ₂ 1. NaBH ₄ , C ₂ H ₅ OH 2. HCl	CH ₂ OH (83	349
O ₂ NCH ₂ H	TMBG, MIBA	OHC H (33-D)	149

References

- 1. W. E. Noland, Chem. Rev., **55**, 137 (1955).
- J. U. Nef, Justus Liebigs Ann. Chem., 280, 263 (1894). Professor Nef was at the University of Chicago at this time having just left Purdue University.
- For summaries of the chemistry of aliphatic nitro compounds, see (a) P. A. S. Smith, Open-Chain Nitrogen Compounds, Part II, Benjamin, New York, 1966; (b) The Chemistry of the Nitro and Nitroso Groups, H. Feuer, Ed., Parts I and II, Interscience, New York, 1969–1970; (c) O. V. Schickh, H. G. Padeken, and A. Segnitz, Houben-Weyl, Methoden der Organischen Chemie, E. Muller, Ed., Vol. X, Part 1, Thieme, Stuttgart, 1971, pp. 9–462; (d) D. Seebach, E. W. Colvin, F. Lehr, and T. Weller, Chimia, 33, 1 (1979).
- For example, see J.-M. Melot, F. Texier-Boullet, and A. Foucaud, Tetrahedron Lett., 1986, 493 and D. Seebach, A. K. Beck, F. Lehr, T. Weller, and E. Colvin, Angew. Chem., Int. Ed. Engl., 20, 391 (1981) and references cited therein.
- 5. See G. Rosini, E. Marotta, R. Ballini, and M. Petrini, Synthesis, **1986**, 237 and references therein.
- 6. D. Seebach, R. Henning, F. Lehr, and J. Gonnermann, Tetrahedron Lett., **1977**, 1161; E. W. Colvin and D. Seebach, J. Chem. Soc., Chem. Commun., **1978**, 689.
- 7. For a review of acyl anion equivalents, see O. W. Lever, Jr., Tetrahedron, **32**, 1943 (1976).
- 8. E. E. van Tamelen and R. J. Thiede, J. Am. Chem. Soc., **74**, 2615 (1952).
- 9. L. G. Donaruma and M. L. Huber, J. Org. Chem., 21, 965 (1956).
- 10. M. F. Hawthorne, J. Am. Chem. Soc., **79**, 2510 (1957).
- M. F. Hawthorne and R. D. Strahm, J. Am. Chem. Soc., 79, 2515 (1957).
- 12. V. M. Belikov, S. G. Mairanovskii, T. B. Korchemnaya, and S. S. Novikov, Izv. Akad. Nauk SSR, Otdel. Khim. Nauk., **1962**, 605; Engl. Transl. p. 560.
- 13. W. E. Noland and R. Libers, Tetrahedron, **19**, Suppl. 1, 23 (1963).
- 14. H. Feuer and A. T. Nielsen, Tetrahedron, 19, Suppl. 1, 65 (1963).
- 15. N. Kornblum and R. A. Brown, J. Am. Chem. Soc., **87**, 1742 (1965).
- 16. J. Armand, Bull. Soc. Chim. Fr., 1965, 3246.
- 17. W. E. Noland and J. M. Eakman, J. Org. Chem., 26, 4118 (1961).
- 18. S. F. Sun and J. T. Folliard, Tetrahedron, 27, 323 (1971).
- 19. R. B. Cundall and A. W. Locke, J. Chem. Soc. (B), 1968, 98.

- 20. N. Kornblum and G. E. Graham, J. Am. Chem. Soc., 73, 4041 (1951).
- 21. K. Johnson and E. F. Degering, J. Org. Chem., 8, 10 (1943).
- 22. N. Kornblum, Org. React, 12, 101 (1962).
- 23. E. Keinan and Y. Mazur, J. Org. Chem., 42, 844 (1977).
- 24. R. H. Fischer and H. M. Weitz, Synthesis, **1980**, 261; this is a review of the synthesis and reactions of cyclic α -nitroketones.
- 25. P. Dampawan and W. W. Zajac, Jr., J. Org. Chem., 47, 1176 (1982).
- 26. R. W. Murray, R. Jeyaraman, and L. Mohan, Tetrahedron Lett., **1986**, 2325.
- 27. W. D. Emmons and A. S. Pagano, J. Am. Chem. Soc., 77, 4557 (1955).
- 28. R. J. Sundberg and P. A. Bukowick, J. Org. Chem., 33, 4098 (1968).
- 29. D. C. Iffland and J.-F. Yen, J. Am. Chem. Soc., **76**, 4083 (1954); M. W. Barnes and J. M. Patterson, J. Org. Chem., **41**, 733 (1976).
- 29a. E. J. Corey and H. Estreicher, Tetrahedron Lett., 1980, 1117.
- 30. A. Amrollah-Madjdabadi, R. Beugelmans, and A. Leche-vallier, Synthesis, **1986**, 826.
- 31. The term nitronic acid is now preferred over the other names because it is easier to use in naming a wider variety of compounds: D. Eckroth, J. Chem. Inform. Comp. Sci., **23**, 157 (1983).
- 32. A. T. Nielsen, in *The Chemistry of the Nitro and Nitroso Groups*, H. Feuer, Ed., Part I, Interscience, New York, 1969, pp. 349–486.
- 33. R. M. Jacobson, Tetrahedron Lett., 1974, 3215.
- 34. A. McCoubrey, J. Chem. Soc., **1951**, 2931.
- 35. H. Shechter, D. E. Ley, and L. Zeldin, J. Am. Chem. Soc., **74**, 3664 (1952).
- 36. F. Boberg and G. R. Schultze, Chem. Ber., 88, (1955); 90, 1215 (1957).
- 37. M. Miyashita, R. Yamaguchi, and A. Yoshikoshi, J. Org. Chem., **49**, 2857 (1984).
- 38. I. H. Sanchez and F. R. Tallabs, Chem. Lett., 1981, 891.
- 39. I. H. Sanchez, J. J. Soria, F. J. Lopez, M. K. Larraza, and H. J. Flores, J. Org. Chem., **49**, 157 (1984).
- 40. J. Gosteli, Helv. Chim. Acta, **60**, 1980 (1977).
- 41. J. C. Sowden and H. O. L. Fischer, J. Am. Chem. Soc., 66, 1312 (1944).
- 42. A. N. O'Neill, Can. J. Chem., 37, 1747 (1959).
- 43. J. G. Gleason, T. F. Buckley, K. G. Holden, D. B. Bryan, and P. Siler, J. Am. Chem. Soc., **101**, 4730 (1979).
- 44. A. Hassner, J. M. Larkin, and J. E. Dowd, J. Org. Chem., **33**, 1733 (1968).
- 45. G. Baccolini, M. Bosco, R. Dalpozzo, and P. Sgarabotto, J. Chem. Soc.,

- Perkin Trans. 2, 1982, 929.
- 46. G. Baccolini, G. Bartoli, M. Bosco, and R. Dalpozzo, J. Chem. Soc., Perkin Trans. 2, **1984**, 363.
- 47. R. B. Chapas, R. D. Knudsen, R. F. Nystrom, and H. R. Snyder, J. Org. Chem., **40**, 3746 (1975) and references cited therein.
- 48. J. H. Gorvin, J. Chem. Soc., Chem. Commun., 1976, 972.
- 49. N. Kornblum, J. T. Patton, and J. B. Nordmann, J. Am. Chem. Soc., **70**, 746 (1948).
- 50. H. Feuer and A. T. Nielsen, J. Am. Chem. Soc., 84, 688 (1962).
- 51. V. Meyer and C. Wurster, Ber., **6**, 1168 (1873).
- 52. A. Geuther, Ber., 7, 1620 (1874).
- 53. V. Meyer, Ber., 8, 29 (1875).
- 54. V. Meyer and J. Locher, Ber., 8, 219 (1875).
- 55. J. Zublin, Ber., 10, 2083 (1877).
- 56. S. Gabriel and M. Koppe, Ber., **19**, 1145 (1886).
- 57. V. Meyer, Ber., 28, 202 (1895).
- 58. S. B. Lippincott and H. B. Hass, Ind. Eng. Chem., 31, 118 (1939).
- 59. M. J. Kamlet, L. A. Kaplan, and J. C. Dacons, J. Org. Chem., **26**, 4371 (1961).
- 60. H. L. Yale, Chem. Rev., 33, 209 (1943).
- 61. F. Di Furia, G. Modena, P. Scrimin, G. M. Gasparini, and G. Grossi, Sep. Sci. Tech., **17**, 1451 (1982); C. A., **97**, 189921t (1982).
- 62. E. Bamberger and E. Rust, Ber., **35**, 45 (1902).
- 63. J. T. Edward and P. H. Tremaine, Can. J. Chem., **49**, 3483 (1971).
- 64. J. T. Edward and P. H. Tremaine, Can. J. Chem., 49, 3489 (1971).
- 65. J. T. Edward and P. H. Tremaine, Can. J. Chem., 49, 3493 (1971).
- 66. P. A. Wade, N. V. Amin, H.-K. Yen, D. T. Price, and G. F. Huhn, J. Org. Chem., **49**, 4595 (1984).
- 67. M. A. F. Holleman, Recl. Trav. Chim. Pays Bas, 15, 356 (1896).
- 68. R. A. Smiley and W. A. Pritchett, J. Chem. Eng. Data, 11, 617 (1966).
- 69. M. Konovalov, J. Russ. Phys. Chem. Soc., **25**, I, 509 (1893); Chem. Zentr., **I**, 464 (1894).
- C. M. Drew, J. R. McNesby, and A. S. Gordon, J. Am. Chem. Soc., 77, 2622 (1955).
- 71. D. J. Morgan, J. Org. Chem., **27**, 4646 (1962).
- 72. S. B. Lippincott, J. Am. Chem. Soc., **62**, 2604 (1940).
- R. W. Lockhart, K. W. Ng, P. E. Nott, and A. M. Unrau, Can. J. Chem.,
 47, 3107 (1969).

- 74. E. M. Nygaard, J. H. McCracken, and T. T. Noland, U.S. Patent 2,370,185 [C. A., **39**, 3551 (1945)].
- 75. E. M. Nygaard, U.S. Pat. 2,401,267 [C. A., 40, 6092 (1946)].
- 76. E. M. Nygaard and T. T. Noland, U.S. Pat. 2,401,269 [C. A., **40**, 6093 (1946)].
- 77. K. Chiba, E. Endo, and T. Sakamoto, Chem. Lett., 1974, 569.
- 78. T. Keumi, T. Morita, T. Mitzui, T. Joka, and H. Kitajima, Synthesis, **1985**, 223.
- 79. M. A. Adams, A. J. Duggin, J. Smolanoff, and J. Meinwald, J. Am. Chem. Soc., **101**, 5364 (1979).
- 80. A. T. Nielsen and T. G. Archibald, Tetrahedron Lett., 1968, 3375.
- 81. J. Skramstad, Acta Chem. Scand., 25, 1287 (1971).
- 82. R. F. Bond, J. C. A. Boeyens, C. W. Holzapfel, and P. S. Steyn, J. Chem. Soc., Perkin Trans. 1, **1979**, 1751.
- 83. S. Deswarte, Bull. Soc. Chim. Fr., 1969, 522.
- 84. F. Boberg and A. Kieso, Justus Liebigs Ann. Chem., 626, 71 (1959).
- 85. F. Boberg, A. Marei, and G. R. Schultze, Justus Liebigs Ann. Chem., **655**, 102 (1962).
- 86. F. Boberg, A. Marei, and K. Kirchhoff, Justus Liebigs Ann. Chem., **708**, 142 (1967).
- 87. F. Boberg, M. Ruhr, and A. Garming, Justus Liebigs Ann. Chem., **1984**, 223.
- 87a. R. Fernandez-Fernandez, A. Gomez-Sanchez, M. Rico, and J. Bellanato, J. Chem. Res. (S), 220 (1987).
- 87b. R. Fernandez-Fernandez, J. Galan, and A. Gomez-Sanchez, J. Chem. Res. (S), 222 (1987).
 - 88. H. Wilson and E. S. Lewis, J. Am. Chem. Soc., **94**, 2283 (1972).
 - 89. W. E. Parham, W. T. Hunter, and R. Hanson, J. Am. Chem. Soc., **73**, 5068 (1951).
 - W. E. Noland, R. B. Hart, W. A. Joern, and R. G. Simon, J. Org. Chem.,
 34, 2058 (1969).
 - 91. W. E. Noland, J. H. Cooley, and P. A. McVeigh, J. Am. Chem. Soc., **79**, 2976 (1957); *ibid.*, **81**, 1209 (1959).
- 92. S. Ranganathan, D. Ranganathan, and R. Iyengar, Tetrahedron, **32**, 961 (1976).
- 93. S. Ranganathan, D. Ranganathan, and A. K. Mehrotra, J. Am. Chem. Soc., **96**, 5261 (1974).
- 94. H. O. Larson and E. K. W. Wat, J. Am. Chem. Soc., **85**, 827 (1963).
- 95. A. A. Griswold and P. S. Starcher, J. Org. Chem., **30**, 1687 (1965).

- 96. A. Hassner and J. Larkin, J. Am. Chem. Soc., **85**, 2181 (1963).
- 97. A. S. Matlack and D. S. Breslow, J. Org. Chem., 32, 1995 (1967).
- 98. R. Ballini and M. Petrini, Synth. Commun., **16**, 1781 (1986).
- 99. R. C. Cookson and P. S. Ray, Tetrahedron Lett., **1982**, 3521.
- 100. K. Kostova and M. Hesse, Helv. Chim. Acta, 67, 1713, 1725 (1984).
- 101. T. Aono, J. H. Bieri, M. Hesse, K. Kostova, A. Lorenzi-Riatsch, Y. Nakashita, and R. Prewo, Helv. Chim. Acta, 68, 1033 (1985).
- 102. H. Stach and M. Hesse, Helv. Chim. Acta, **69**, 85 (1986).
- 103. H. Stach and M. Hesse, Helv. Chim. Acta, **69**, 1614 (1986).
- 104. R. Stoermer and K. Brachmann, Chem Ber., 44, 315 (1911).
- 105. K. Fries and E. Pusch, Justus Liebigs Ann. Chem., 442, 272 (1925).
- S. E. Denmark, C. J. Cramer, and J. A. Sternberg, Helv. Chim. Acta, 69, 1971 (1986).
- J. M. Grosheintz and H. O. L. Fischer, J. Am. Chem. Soc., 70, 1479 (1948).
- 108. B. Iselin and H. O. L. Fischer, J. Am. Chem. Soc., 70, 3946 (1948).
- D. J. Cook, O. R. Pierce, and E. T. McBee, J. Am. Chem. Soc., 76, 83 (1954).
- 110. K. Matoba and T. Yamazaki, Chem. Pharm. Bull., 30, 3863 (1982).
- 111. K. Matoba, T. Morita, and T. Yamazaki, Chem. Pharm. Bull., **31**, 4368 (1983).
- 112. A. Kurfurst and J. Kuthan, Collect. Czech. Chem. Commun., **48**, 1718 (1983).
- 113. M. F. Semmelhack, L. Keller, T. Sato, E. J. Spiess, and W. Wulff, J. Org. Chem., **50**, 5566 (1985).
- 114. A. Baranski, G. A. Shvekhgeimer, and N. I. Kirillova, Polish J. Chem., **54**, 23 (1980).
- 115. S. S. Nametkin, J. Russ. Phys. Chem. Soc., **45**, 1414 (1913) [C.A., **8**, 324 (1914)].
- 116. S. S. Nametkin and E. I. Pozdyakova, J. Russ. Phys. Chem. Soc., **45**, 1410 (1913) [C.A., **8**, 324 (1914)].
- 117. S. S. Nametkin, M. Dobrovolskaja, and M. Oparina, J. Russ. Phys. Chem. Soc., **47**, 409 (1915) [C.A., **10**, (1916)].
- S. S. Nametkin and L. A. Abakumovakaja, J. Russ. Phys. Chem. Soc.,
 47, 414 (1915) [C.A., 10, 45 (1916)].
- 119. S. S. Nametkin and A. Chuehrikova, J. Russ. Phys. Chem. Soc., **47**, 425, 1590 (1915) [C.A., **10**, 46 (1916)].
- 120. S. S. Nametkin and A. S. Zabrodina, Ber., **59**, 368 (1926).
- 121. S. S. Nametkin and O. Madaeff-Szitscheff, Ber., **59**, 370 (1926).

- 122. S. S. Nametkin and L. Brussoff, Justus Liebigs Ann. Chem., **459**, 144, 153 (1927).
- 123. S. S. Nametkin and A. S. Zabrodina, Chem. Ber., **69**, 1789 (1936).
- 124. H. Shechter and F. T. Williams, Jr., J. Org. Chem., 27, 3699 (1962).
- 125. F. S. Alvarez and D. Wren, Tetrahedron Lett., 1973, 569.
- 126. N. Kornblum and A. S. Erickson, J. Org. Chem., 46, 1037 (1981).
- 127. N. Kornblum, A. S. Erickson, W. J. Kelly, and B. Henggeler, J. Org. Chem., **47**, 4534 (1982).
- 128. F. Kiensle, G. W. Holland, J. L. Jernow, S. Kwoh, and P. Rosen, J. Org. Chem., **38**, 3440 (1973).
- 129. I. G. Tishchenko and V. V. Berezovskii, Vestsi Akad. Nauk B, SSR, Ser. Khim. Nauk, **91**, (3) (1981) [C.A., **95**, 114731f (1981)].
- I. G. Tishchenko and V. V. Berezovskii, Vestsi Akad. Nauk B, SSR, Ser. Khim. Nauk, 75 (5) (1981) [C. A., 96, 51920q (1982)].
- 131. K. Steliou and M.-A. Poupart, J. Org. Chem., 50, 4971 (1985).
- 132. W. Danikiewicz and M. Makosza, Tetrahedron Lett., 1985, 3599 (1985).
- 133. F. Freeman and A. Yeramyan, Tetrahedron Lett., 1968, 4783.
- 134. F. Freeman, A. Yeramyan, and F. Young, J. Org. Chem., **34**, 2438 (1969).
- 135. F. Freeman and A. Yeramyan, J. Org. Chem., 35, 2061 (1970).
- 136. R. Walchli, S. Bienz, and M. Hesse, Helv. Chim. Acta., 68, 484 (1984).
- 136a. P. S. Vankar, R. Rathore, and S. Chandrasekaran, Synth. Commun., 17, 195 (1987).
- 137. J. T. Thurston and R. L. Shriner, J. Am. Chem. Soc., **57**, 2163 (1935).
- 138. G. A. Russell, J. Am. Chem. Soc., 76, 1595 (1984).
- 139. Y. Yano, M. Ohshima, and S. Sutoh, J. Chem. Soc., Chem. Commun., **1984**, 695.
- 140. J. R. Williams, L. R. Unger, and R. H. Moore, J. Org. Chem., 43, 1271 (1978).
- 141. J. E. McMurry, J. Melton, and H. Padgett, J. Org. Chem., **39**, 259 (1974).
- 142. P. Dubs and H.-P. Schenk, Helv. Chim. Acta, **61**, 984 (1978).
- 143. A. G. M. Barrett, G. G. Graboski, and M. A. Russell, J. Org. Chem., 50, 2603 (1985).
- 143a. A. G. M. Barrett, G. G. Graboski, M. Sabat, and S. J. Taylor, J. Org. Chem., **52**, 4693 (1987).
- 143b. J. M. Aizpurua, M. Oiarbide, and C. Palomo, Tetrahedron Lett., **1987**, 5361.
- 144. P. A. Bartlett, F. R. Green, III, and T. R. Webb, Tetrahedron Lett., **1977**, 331.

- 145. M. R. Galobardes and H. W. Pinnick, Tetrahedron Lett., 1981, 5235.
- 146. H. Shechter and R. B. Kaplan, J. Am. Chem. Soc., **75**, 3980 (1953).
- 147. G. A. Olah, M. Arvanaghi, Y. D. Vankar, and G. K. S. Prakash, Synthesis, **1980**, 662.
- 148. G. A. Olah and B. G. B. Gupta, Synthesis, 1980, 44.
- 149. D. H. R. Barton, W. B. Motherwell, and S. Z. Zard, Tetrahedron Lett., 1983, 5227.
- 150. A. H. Pagano and H. Shechter, J. Org. Chem., **35**, 295 (1970).
- 151. T. Severin and H. Kullmer, Chem. Ber., **104**, 440 (1971).
- 152. T. Severin and D. Konig, Chem. Ber., **107**, 1499 (1974).
- 153. J. E. McMurry and J. Melton, J. Am. Chem. Soc., 93, 5309 (1971).
- 154. J. E. McMurry and J. Melton, J. Org. Chem., 33, 4367 (1973).
- 155. P. M. G. Bavin, J. Med. Chem., 9, 52 (1966).
- 156. J. E. McMurry, Acc. Chem. Res., 7, 281 (1974).
- 157. M. Ochiai, M. Arimoto, and E. Fujita, Tetrahedron Lett., 1981, 1115.
- 158. J. Tsuji, T. Yamakawa, and T. Mandai, Tetrahedron Lett., 1978, 565.
- 159. R. Walchli, A. Guggisberg, and M. Hesse, Helv. Chim. Acta, **67**, 2178 (1984).
- 160. R. Noyori and M. Suzuki, Angew. Chem., Int. Ed. Engl., 23, 847 (1984).
- 161. G. Mehta, S. K. Kapoor, and P. N. Pandey, Ind. J. Chem., **14B**, 252 (1976).
- 162. T.-L. Ho and C. M. Wong, Synthesis, **1974**, 196.
- 163. M. Kocor, M. Cumuzka, and T. Cynkowski, Tetrahedron Lett., **1972**, 4625.
- 164. M. Miyashita, T. Yanami, and A. Yoshikoshi, J. Am. Chem. Soc., **98**, 4679 (1976).
- 165. M. Miyashita, T. Kumazawa, and A. Yoshikoshi, Chem. Lett., **1980**, 1043.
- 166. M. Miyashita, T. Yanami, and A. Yoshikoshi, Org. Synth., **60**, 117 (1981).
- 167. M. Miyashita, T. Yanami, T. Kumazawa, and A. Yoshikoshi, J. Am. Chem. Soc., **106**, 2149 (1984).
- 168. A. Yoshikoshi and M. Miyashita, Acc. Chem. Res., 18, 284 (1985).
- D. Seebach and M. A. Brook, Helv. Chim. Acta, 68, 319 (1985); Can. J. Chem., 65, 836 (1987).
- 170. R. Kirchhoff, Tetrahedron Lett., 1976, 2533.
- 171. For a general review on chromium(II) in preparative organic chemistry, see J. R. Hanson, Synthesis, **1974**, 1.
- 172. Y. Akita, M. Inaba, H. Uchida, and A. Ohta, Synthesis, 1977, 792.

- 173. A. Hassner and C. Heathcock, J. Org. Chem., 29, 1350 (1964).
- 174. J. R. Hanson and T. D. Organ, J. Chem. Soc. (C), **1970**, 1182.
- D. H. R. Barton, W. B. Motherwell, E. S. Simon, and S. Z. Zard, J. Chem. Soc., Perkin Trans. 1, 1986, 2243.
- 176. For methods to hydrolyze oximes, see J. March, *Advanced Organic Chemistry*, Wiley, New York, 1985, pp. 784–785.
- 177. D. Monti, P. Gramatica, G. Speranza, S. Taguapietra, and P. Manitto, Synth. Commun., **16**, 803 (1986).
- 178. R. M. Moriarty, O. Prakash, and P. R. Vavilikolanu, Synth. Commun., **16**, 1247 (1986).
- 179. M. Konowaloff, J. Russ. Phys. Chem. Soc., **30**, 960 (1898); Chem. Zentr., **1**, 597 (1899).
- M. Konowaloff, J. Russ. Phys. Chem. Soc., 31, 54 (1898); Chem. Zentr.,
 1, 1074 (1899).
- 181. J. von Braun and W. Sobecki, Chem. Ber., **44**, 2526 (1911).
- 182. J. von Braun and O. Kruber, Chem. Ber., 45, 384 (1912).
- 183. J. von Braun and H. Danziger, Chem. Ber., **46**, 103 (1913).
- 184. J. F. Knifton, J. Org. Chem., 38, 3296 (1973).
- 185. P. A. Wehrli and B. Schaer, Synthesis, 1977, 649.
- 185a. D. H. R. Barton, I. Fernandez, C. S. Richard, and S. Z. Zard, Tetrahedron, 43, 551 (1987).
- 186. L. Maat, J. A. Peters, and M. A. Prazeres, Recl. Trav. Chim. Pays-Bas, **104**, 205 (1985).
- 187. S. S. Nametkin, G. I. Zyabreva, and B. A. Krentsel, Dokl. Akad. Nauk SSSR, **72**, 711 (1950) [C.A., **44**, 9362d (1950)].
- 188. A. Hantzsch and O. W. Schultze, Chem. Ber., 29, 2251 (1896).
- 189. A. A. Artemev, E. V. Genkina, A. B. Malimonova, V. P. Trofilkina, and M. Isaenkova, Zh. Vses. Khim. Obshch-estva im D. I. Mendeleeva, **10**, 588 (1965) [C.A., **64**, 1975h (1966)].
- 190. Brit. Pat. 684,369 [C.A., 48, 2095c (1954)].
- 191. E. B. Hodge, J. Am. Chem. Soc., **73**, 2341 (1951).
- 192. R. Pearson and W. V. Evans, Trans. Electrochem. Soc., **84**, 173 (1943).
- 193. J. Nokami, T. Sonoda, and S. Wakabayashi, Synthesis, 1983, 763.
- 194. W. T. Monte, M. M. Baizer, and R. D. Little, J. Org. Chem., **48**, 803 (1983).
- 195. T. Miyakoshi, Synthesis, **1986**, 766.
- 196. N. Kornblum, R. K. Blackwood, and D. D. Mooberry, J. Am. Chem. Soc., **78**, 1501 (1956).
- 197. N. Kornblum and P. A. Wade, J. Org. Chem., 38, 1418 (1973).

- 198. D. Seebach, V. Ehrig, H. F. Leitz, and R. Henning, Chem. Ber., **108**, 1946 (1975).
- 199. H. Lerche, D. Konig, and T. Severin, Chem. Ber., 107, 1509 (1974).
- 200. E. Keinan and Y. Mazur, J. Am. Chem. Soc., 99, 3861 (1977).
- 201. J. L. Hogg, T. E. Goodwin, and D. W. Nave, Org. Prep. Proc. Int., **10**, 9 (1978).
- 202. J. H. Clark and D. G. Cork, J. Chem. Soc., Chem. Commun., 1982, 635.
- 203. J. H. Clark, D. G. Cork, and H. W. Gibbs, J. Chem. Soc., Perkin Trans. 1, **1983**, 2253.
- 204. N. Kornblum and R. A. Brown, J. Am. Chem. Soc., **86**, 2681 (1964).
- 205. E. P. Stefi and M. F. Dull, J. Am. Chem. Soc., **69**, 3037 (1947). References to very early work are provided in this paper.
- 206. T. Urbanski, J. Chem. Soc., **1949**, 3374.
- 207. T. Urbanski, Tetrahedron, 2, 296 (1958).
- 208. A. McKillop and R. J. Kobylecki, Tetrahedron, 30, 1365 (1974).
- 209. H. B. Fraser and G. A. R. Kon, J. Chem. Soc., 1934, 604.
- 210. H. Fischer and M. Neber, Justus Liebigs Ann. Chem., 496, 1 (1932).
- 211. R. M. Dodson and B. Riegel, J. Org. Chem., 13, 424 (1948).
- 212. C. W. Shoppee, J. Chem. Soc., 1948, 1032, 1043.
- 213. H. H. Baer and W. Rank, Can. J. Chem., **50**, 1292 (1972).
- 214. P. Lipp and H. Braucher, Chem. Ber., 72, 2079 (1939).
- 215. R. S. Varma, M. Varma, and G. W. Kabalka, Tetrahedron Lett., **1985**, 3777.
- 216. J. R. Hanson and E. Premuzic, Tetrahedron Lett., 1966, 5441.
- 217. J. R. Hanson and E. Premuzic, Tetrahedron, 23, 4105 (1967).
- 218. S. Ranganathan and B. B. Singh, J. Chem. Soc., Chem. Commun., 1970, 218.
- 219. T. S. Rao, H. H. Mathur, and G. K. Trivedi, Tetrahedron Lett., **1984**, 5561.
- 220. R. S. Varma, M. Varma, and G. W. Kabalka, Synth. Commun., **15**, 1325 (1985).
- 221. R. S. Varma and G. W. Kabalka, Synth. Commun., 15, 443 (1985).
- 221a. G. W. Kabalka and N. M. Goudgaon, Synth. Commun., **18**, 693 (1988).
- 222. H. Chikashita, Y. Morita, and K. Itoh, Synth. Commun., 15, 527 (1985).
- 223. R. S. Varma and G. W. Kabalka, Org. Prep. Proc. Int., 17, 254 (1985).
- 224. M. S. Mourad, R. S. Varma, and G. W. Kabalka, Synthesis, 1985, 654.
- 225. R. T. Gilsdorf and F. F. Nord, J. Am. Chem. Soc., 72, 4327 (1950).
- 226. D. Monti, P. Gramatica, G. Speranza, and P. Manitto, Tetrahedron Lett.,

- **1983**, 417.
- 227. R. S. Varma, M. Varma, and G. W. Kabalka, Synth. Commun., **16**, 91 (1986).
- 228. Y. Komeichi, S. Tomioka, T. Iwasaki, and K. Watanabe, Tetrahedron Lett., **1970**, 4677.
- 228a. J. M. Aizpurua, M. Oiarbide, and C. Palomo, Tetrahedron Lett., **1987**, 5365.
- 229. D. H. R. Barton, H. Togo, and S. Z. Zard, Tetrahedron, 41, 5507 (1985).
- 230. H. Feuer and L. F. Spinicelli, J. Org. Chem., 42, 2091 (1977).
- 231. See also R. G. Dubenko, A. I. Dychenko, and E. F. Gorbenko, M. O. Lozinskii, and P. S. Pelkis, Zh. Org. Khim., **1983**, 65; J. Org. Chem. USSR, Engl. Transl., **19**, 58 (1983).
- 231a. T. S. Rao and G. K. Trivedi, Heterocycles, **26**, 2117 (1987).
- 232. H. Newman and R. B. Angier, J. Chem. Soc., Chem. Commun., **1963**, 369.
- 233. H. H. Baer and C. B. Madumelu, Can. J. Chem., 56, 1177 (1978).
- 234. S. Kumazawa, T. Sakibara, R. Sudoh, and T. Nakagawa, Angew. Ch., Int. Ed. Engl., **12**, 921 (1973).
- 235. N. A. Sokolov, I. G. Tishchenko, and N. V. Kovganko, Zh. Org. Khim., **14**, 517 (1978); *Engl. transl.* 478.
- 235a. W. A. Szarek, G. W. Hay, and M. M. Perlmutter, J. Chem. Soc., Chem. Commun., **1982**, 1253.
- 235b. P. A. Beeley, W. A. Szarek, G. W. Hay, and M. M. Perlmutter, Can. J. Chem., **62**, 2709 (1984).
- 236. Y. D. Vankar and S. P. Singh, Chem. Lett., **1986**, 1939.
- 237. S. H. Imam and B. A. Marples, Tetrahedron Lett., 1977, 2613.
- 238. K. Yamada, S. Tanaka, K. Naruchi, and M. Yamamoto, J. Org. Chem., **47**, 5283 (1982).
- 239. G. J. Edge, S. H. Imam, and B. A. Marples, J. Chem. Soc., Perkin Trans. 1, **1984**, 2319.
- 240. O. L. Chapman, A. A. Griswold, E. Hoganson, G. Lenz, and J. Reasoner, Pure Appl. Chem., **9**, 585 (1964).
- 241. J. T. Pinhey and E. Rizzardo, J. Chem. Soc., Chem. Commun., **1965**, 362.
- 242. I. Saito, M. Takami, and T. Matsuura, Tetrahedron Lett., 1975, 3155.
- 243. H. Tomioka, K. Ueda, H. Ohi, and Y. Izawa, Chem. Lett., **1986**, 1359.
- 244. R. D. Grant, J. T. Pinhey, E. Rizzardo, and G. D. Smith, Aust. J. Chem., **38**, 1505 (1985).
- 245. R. Ballini, M. Petrini, E. Marcantoni, and G. Rosini, Synthesis, **1988**, 231.

- 246. L. C. Leitch, Can. J. Chem., 33, 400 (1955).
- 247. J. C. Sowden, J. Am. Chem. Soc., 72, 3325 (1950).
- 248. J. C. Sowden, Adv. Carbohydr. Chem., 6, 291–318, NY, (1951).
- 249. J. H. Clark, J. M. Miller, and K. H. So, J. Chem. Soc., Perkin Trans. 1, **1978**, 941.
- 250. A. K. H. MacGibson, L. F. Blackwell, and P. D. Buckley, Eur. J. Biochem., **77**, 93 (1977).
- 251. J-D. Lou and W.-X. Lou, Synthesis, 1987, 179.
- 252. M. Yamashita, M. Sugiura, T. Oshikawa, and S. Inokawa, Synthesis, 1987, 62.
- 253. T. Tanaka, A. Hazato, K. Bannai, N. Okamura, S. Sugiura, K. Manabe, T. Toru, and S. Kurozumi, Tetrahedron, **43**, 813 (1987).
- 254. M. Miyashita, R. Yamaguchi, and A. Yoshikoshi, Chem. Lett., **1982**, 1505.
- 255. M. Yamada, M. Yamashita, and S. Inokawa, Synthesis, 1982, 1026.
- 256. M. Yamashita, H. Nomoto, H. Imoto, and Y. Tamada, unpublished results submitted to *Synthesis*.
- 257. O. Convert and J. Armand, C. R. Hebd. Seances Acad. Sci., **262C**, 1013 (1966).
- 258. O. Convert and J. Armand, C. R. Hebd. Seances Acad. Sci., **262C**, 1013 (1966).
- 259. B. Simoneau and P. Brassard, Tetrahedron, **44**, 1015 (1988).
- 260. A. Pecunioso and R. Menicagli, J. Org. Chem., **53**, 45 (1988).
- 261. K. Lee and D. Y. Oh, Tetrahedron Lett., 1988, 2977.
- 262. S. Bieze and M. Hesse, Helv. Chim. Acta, **70**, 1333 (1987).
- 263. J. Colonge and J.-M. Pouchol, Bull. Soc. Chim. Fr., 1962, 832.
- 264. W. G. Overend, M. Stacey, and L. F. Wiggins, J. Chem. Soc., **1949**, 1358.
- 265. J. C. Sowden, J. Am. Chem. Soc., 72, 808 (1950).
- 265a. J. C. Sowden, J. Am. Chem. Soc., **71**, 1897 (1949).
- 266. O. von Schickh, U.S. Pat. 2,712,032 (1955) [C.A., 51, 3657a (1957)].
- 266a. R. Ballini, E. Marcantoni, M. Petrini, and G. Rosini, Synthesis, **1988**, 915.
- 267. H. Chikashita, Y. Morita, and K. Itoh, Synth. Commun., 17, 677 (1987).
- 268. T. A. Eggelte, H. de Koning, and H. O. Huisman, Heterocycles, **4**, 19 (1976).
- 269. H. H. Baer and M. C. T. Wang, Can. J. Chem., 46, 2793 (1968).
- 270. A. Pecunioso and R. Menicagli, J. Org. Chem., **53**, 2614 (1988).
- 271. M. C. Kloetzel, J. Am. Chem. Soc., 70, 3571 (1948).

- 272. C. Kimura, Yuki Gosei Kagaku Kyokaishi, **19**, 57 (1961) [C.A., **55**, 5337 (1961)].
- 273. J. C. Sowden and M. L. Oftedahl, J. Am. Chem. Soc., 82, 2303 (1960).
- 274. J. C. Sowden and M. L. Oftedahl, J. Org. Chem., 26, 2153 (1961).
- 275. J. C. Sowden and H. O. L. Fischer, J. Am. Chem. Soc., **69**, 1963 (1947).
- 276. S. D. Gero and J. Defaye, C. R. Hebd. Seances Acad. Sci., **261**, 1555 (1965).
- 277. J. C. Sowden, Science, 109, 229 (1949).
- 278. M. B. Perry and A. C. Webb, Can. J. Chem., 46, 2481 (1968).
- 279. M. B. Perry and V. Daoust, Can. J. Chem., **51**, 3039 (1973).
- 280. M. B. Perry and A. C. Webb, Can. J. Chem., 47, 1245 (1969).
- 281. R. N. Ray, J. Ind. Chem. Soc., 1037 (1979).
- 282. J. C. Sowden, J. Biol. Chem., 180, 55 (1949).
- 283. M. B. Perry, Methods Carbohydr. Chem., 7, 32 (1976).
- 284. M. B. Perry and J. Furdova, Can. J. Chem., 46, 2859 (1968).
- 285. M. B. Perry and J. Furdova, Methods Carbohydr. Chem., 7, 25 (1976).
- 286. M. B. Perry, Methods Carbohydr. Chem., 7, 29 (1976).
- 287. J. C. Sowden and H. O. L. Fischer, J. Am. Chem. Soc., 67, 1713 (1945).
- 288. J. C. Sowden and H. O. L. Fischer, J. Am. Chem. Soc., 69, 1048 (1947).
- 289. G. Grethe, T. Mitt, T. H. Williams, and M. R. Uskokovic, J. Org. Chem., **48**, 5309 (1983).
- 290. F. M. Hauser and S. R. Effenberger, Chem. Rev., **86**, 35 (1986).
- 291. R. Tamura, M. Sato, and D. Oda, J. Org. Chem., **51**, 4368 (1986).
- 292. W. C. Wildman and C. H. Hemminger, J. Org. Chem., 17, 1641 (1952).
- 293. M. Lagrenee and H. Normant, C. R. Hebd. Seances Acad. Sci., **284C**, 153 (1977).
- 294. E. Bosone, P. Farina, G. Guazzi, S. Innocenti, and V. Marotta, Synthesis, **1983**, 942.
- 295. R. Ballini and M. Petrini, Synth. Commun., 14, 827 (1984).
- 296. A. T. Hewson and D. T. MacPherson, J. Chem. Soc., Perkin Trans. 1, **1985**, 2625.
- 297. J. C. Sowden and R. Schaffer, J. Am. Chem. Soc., 73, 4662 (1951).
- 298. C. Satoh and A. Kiyomoto, Chem. Pharm. Bull., 12, 615 (1964).
- 298a. L. Benzing and M. B. Perry, Can. J. Chem., **56**, 691 (1978).
- 299. J. C. Sowden and H. O. L. Fischer, J. Am. Chem. Soc., 68, 1511 (1946).
- 300. R. Meuwly and A. Vasella, Helv. Chim. Acta, 69, 751 (1986).
- 301. G. Buchbauer and E. Dworan, Monatsh. Chem., **111**, 1165 (1980).
- 302. W. C. Wildman and D. R. Saunders, J. Org. Chem., 19, 381 (1954).

- 303. R. D. Gless and H. Rapoport, J. Org. Chem., 44, 1324 (1979).
- 304. M. S. Ashwood, L. A. Bell, P. G. Houghton, and S. H. B. Wright, Synthesis, **1988**, 379.
- 305. D. St. C. Black, Tetrahedron Lett., 1972, 1331.
- 306. G. D. Buckley, J. L. Charlish, and J. D. Rose, J. Chem. Soc., **1947**, 1514.
- 307. T. Miyakoshi, H. Ohmichi, and S. Saito, Koen Yoshishu, **1979**, 161 [C.A., **92**, 214932d (1980)].
- 308. F. M. Hauser and V. M. Baghdanov, J. Org. Chem., 53, 4676 (1988).
- 309. J. V. Karabinos and C. S. Hudson, J. Am. Chem. Soc., **75**, 4324 (1953).
- 310. F. Kienzle and R. E. Minder, Helv. Chim. Acta, **59**, 439 (1976).
- 311. S. Nametkin, Justus Liebigs Ann. Chem., 438, 185 (1924).
- 312. H.-D. Martin, M. Kummer, G. Martin, J. Bartsch, D. Bruck, A. Heinrichs, B. Mayer, S. Rover, A. Steigel, D. Mootz, B. Middelhauve, and D. Scheutzow, Chem. Ber., 120, 1133 (1987).
- 313. A. G. M. Barrett, G. G. Graboski, and M. A. Russell, J. Org. Chem., **51**, 1012 (1986).
- 314. Y. Nakashita, T. Watanabe, E. Benkert, A. Lorenzi-Riatsch, and M. Hesse, Helv. Chim. Acta, **67**, 1204 (1984).
- 315. H. Stach and M. Hesse, Helv. Chim. Acta, 70, 315 (1987).
- 316. M. O. Forster, J. Chem. Soc., 77, 251 (1900).
- 317. S. E. Denmark and J. J. Ares, J. Am. Chem. Soc., 110, 4432 (1988).
- 318. W. Danikiewicz and M. Makosza, Tetrahedron Lett., 1985, 3599, 6523.
- 319. P. Dubs and R. Stussi, Helv. Chim. Acta, **61**, 990 (1978).
- 320. J. Froborg and G. Magnusson, J. Am. Chem. Soc., 100, 6728 (1978).
- 321. C. Kimura, K. Murai, S. Suzuki, and R. Hayashi, Yukagaku Zasshi, **31**, 104 (1982) [C.A., **97**, 6044s (1982)].
- 322. G. Mechanic and M. L. Tanzer, Biochem, Biophys. Res. Commun., 41, 1597 (1970).
- 323. S. Hirano, T. Hiyama, S. Fujita, T. Kawaguti, Y. Hayashi, and H. Nozaki, Tetrahedron, **30**, 2633 (1974).
- 324. R. A. Raphael and S. J. Telfer, Tetrahedron Lett., 1985, 489.
- 325. W. C. Wildman and R. B. Wildman, J. Org. Chem., 17, 581 (1952).
- 326. W. C. Wildman, R. B. Wildman, W. T. Norton, and J. B. Fine, J. Am. Chem. Soc., **75**, 1912 (1953).
- 327. F. Loftus, Synth. Commun., 10, 59 (1980).
- 328. D. W. Cameron and E. M. Hildyard, J. Chem. Soc., 1968, 166.
- 329. W. Wislicenus and M. Waldmuller, Ber., **41**, 3334 (1908).
- 330. C. P. Forbes, W. J. Schoeman, H. F. Strauss, E. M. M. Venter, G. L.

- Wenteler, and A. Wiechers, J. Chem. Soc., Perkin Trans. 1, 1980, 906.
- 331. R. Ballini, M. Petrini, and E. Marotta, Synth. Commun., 17, 543 (1987).
- 332. E. Benkert and M. Hesse, Helv. Chim. Acta., 70, 2166 (1987).
- 333. J. Bagli and T. Bogri, Tetrahedron Lett., 1972, 3815.
- 334. B. P. Cho, V. K. Chadha, G. C. Le Breton, and D. L. Venton, J. Org. Chem., **51**, 4279 (1986).
- 335. N. L. Drake and C. M. Kraebel, J. Org. Chem., 26, 41 (1961).
- 336. B. Weinstein and A. H. Fenselau, J. Org. Chem., 27, 4094 (1962).
- 337. J. A. Barltrop and J. S. Nicholson, J. Chem. Soc., 1951, 2524.
- 338. T. Keumi, T. Inagaki, N. Nakayama, T. Morita, and H. Kitajima, J. Chem. Soc., Chem. Commun., **1987**, 1091.
- 339. N. Ono, Y. Tanabe, R. Tanikaga, A. Kaji, and T. Matsuo, Bull. Chem. Soc. Jpn., **53**, 3033 (1980).
- 340. W. E. Noland, M. S. Baker, and H. I. Freeman, J. Am. Chem. Soc., **78**, 2233 (1956).
- 341. F. P. Cossio, C. Lopez, M. Oiarbide, C. Palomo, D. Aparicio, and G. Rubiales, Tetrahedron Lett., **1988**, 3133.
- 342. F. Kappler, V. M. Vrudhula, and A. Hampton, J. Med. Chem., **31**, 384 (1988).
- 343. E. P. Kohler and J. F. Stone, Jr., J. Am. Chem. Soc., 52, 761 (1930).
- 344. P. Auvray, P. Knochel, and J. F. Normant, Tetrahedron Lett., **1986**, 5091.
- 345. T. Tanaka, A. Hazato, K. Bannai, N. Okamura, S. Sugiura, K. Manabe, S. Kurozumi, M. Suzuki, and R. Noyori, Tetrahedron Lett., 1984, 4947.
- 346. B. M. Trost, G.-H. Kuo, and T. Benneche, J. Am. Chem. Soc., **110**, 621 (1988).
- 347. S. V. Kessar, J. Ind. Chem. Soc., 47, 619 (1970).
- 348. S. V. Kessar, Y. P. Gupta, R. K. Mahajan, G. S. Joshi, and A. L. Rampal, Tetrahedron, **24**, 899 (1968).
- 349. S. V. Kessar, A. L. Rampal, and Y. P. Gupta, Tetrahedron, **24**, 905 (1968).

The Peterson Olefination Reaction

David J. Ager, Mt. Prospect, Illinois

1. Introduction

The Peterson olefination reaction provides a useful method for the preparation of alkenes from α -silyl carbanions and carbonyl compounds. As alkenes hold a pivotal role in synthetic methodology for the introduction of

$$R_{3}^{1}Si\overline{C}R^{2}R^{2}R^{3} + R^{4}COR^{4} \longrightarrow R_{3}^{4}SiCR^{2}R^{3}C(O^{-})R^{4}R^{5} \longrightarrow R^{2}R^{3}C = CR^{4}R^{5}$$
(1)

vicinal functionality, particularly in a stereoselective manner, (1) the Peterson reaction is increasing in importance in the reaction repertoire. This chapter discusses the reaction (Eq. 1) and its advantages over comparable methods such as the Wittig reaction.

Although elimination of β -silylalkoxides, as shown in Eq. 1, was noted in 1947, (2) it was not until Peterson described the preparation of functionalized alkenes from α -silyl carbanions in 1968 that the full potential of the reaction became apparent. (3) Alkenes are usually only isolated directly from the condensation when an anion-stabilizing group is present in the carbanion (R^2 or R^3 in Eq. 1); if not, the β -hydroxysilane is formed. Many examples of the formation of alkenes from β -hydroxysilanes are cited in the literature. These eliminations are discussed in this chapter, although they strictly should not be called Peterson olefination reactions. However, the "common" organic reactions of β -hydroxysilanes which follow the usual pathways—such as the thermolytic elimination of esters derived from those alcohols (4)—are omitted.

The central nature of the Peterson reaction to organosilicon chemistry has led all reviews in this area to discuss the subject to some extent. (5-22) In addition, the reaction itself has been reviewed previously. (23, 24)

2. Mechanism

At present, the exact mechanism of the Peterson reaction is not clear. The experimental results can, however, be rationalized and used in a predictive manner, particularly with regard to the E:Z product ratio, by consideration of α -silyl carbanions bearing alkyl or electron-donating substituents and those with electron-withdrawing groups separately. The principal mechanistic difference arises from the exact timing for the elimination of the oxygen moiety—whether it is concerted with the loss of the silyl group, or stepwise (E_{1cb} -like) in nature. Indeed, CNDO–MO calculations suggest that a stepwise mechanism is plausible for the Peterson olefination reaction. (25)

2.1. Alkyl Substituents

When only alkyl, hydrogen, or electron-donating substituents are present on the carbon atom bonded to silicon, the stereochemical outcome of the Peterson olefination reaction can be controlled by the choice of conditions for the elimination from the intermediate β -hydroxysilane 1. Since aryl substituents in the α -silyl carbanion often necessitate the use of harsh conditions for the deprotonation of the parent silane, these substituents are best considered with electron-withdrawing groups.

Condensation of an α -silyl carbanion with a carbonyl compound results in a β -silylalkoxide **2**. If the metal counterion is covalently bound to the oxygen—as with lithium, magnesium, or aluminum (3, 26)—then protonation provides the β -hydroxysilanes **1** which can be isolated. The condensation, however, usually results in a diastereomeric mixture of these β -hydroxysilanes, although they can be separated by the usual physical methods such as chromatography.

When a β -hydroxysilane (e.g., 1a) is treated with a base to yield an alkoxide 2a with considerable ionic character on the oxygen atom such as with a sodium or potassium counterion, or if the condensation (Eq. 2) results in such a

$$R_{3}Si \quad R^{3} \qquad R_{4} \qquad R_{2} \qquad R^{4}$$

$$R^{1} \quad R^{2} \qquad R^{4} \qquad R^{2} \qquad R^{4}$$

$$R^{1} \quad R^{2} \qquad R^{4} \qquad R^{2} \qquad R^{4}$$

$$R^{1} \quad R^{2} \qquad R^{4} \qquad R^{2} \qquad R^{4}$$

$$R^{1} \quad R^{2} \qquad R^{4} \qquad R^{4} \qquad R^{2} \qquad R^{4}$$

$$R_{3}Si \quad R^{4} \qquad R^{3}Si \quad R^{4} \qquad R^{3}Si \quad R^{4} \qquad R^{3}Si \qquad R^{4}$$

$$R_{1} \quad R^{2} \qquad R^{3}Si \qquad R^{4} \qquad R^{4}Si \qquad R^{4} \qquad R^{4}Si \qquad R^{4} \qquad$$

species, a *syn* elimination results. (27) A pentacoordinate silicon species **3** may be involved in the reaction, but the formation of this intermediate is still open to question (Eq. 3). This base-promoted elimination pathway is accepted as concerted to account for the stereochemical outcome observed.

$$\begin{array}{c}
R_{3}Si \quad R^{3} \\
R^{1} \quad R^{2} \quad OH
\end{array}$$

$$\begin{array}{c}
R_{3}Si \quad O \\
R^{1} \quad R^{2} \quad R^{3}R^{4}
\end{array}$$

$$\begin{array}{c}
R_{3}Si \quad O \\
R^{1} \quad R^{2} \quad R^{3}R^{4}
\end{array}$$

$$\begin{array}{c}
R_{3}Si \quad O \\
R^{1} \quad R^{2} \quad R^{3}R^{4}
\end{array}$$

$$\begin{array}{c}
R_{3}Si \quad O \\
R^{1} \quad R^{2} \quad R^{3}R^{4}
\end{array}$$

$$\begin{array}{c}
R_{3}Si \quad O \\
R^{1} \quad R^{2} \quad R^{3}R^{4}
\end{array}$$

$$\begin{array}{c}
R_{3}Si \quad O \\
R^{1} \quad R^{2} \quad R^{3}R^{4}
\end{array}$$

$$\begin{array}{c}
R_{3}Si \quad O \\
R^{1} \quad R^{2} \quad R^{3}R^{4}
\end{array}$$

$$\begin{array}{c}
R_{3}Si \quad O \\
R^{1} \quad R^{2} \quad R^{3}R^{4}
\end{array}$$

$$\begin{array}{c}
R_{3}Si \quad O \\
R_{1} \quad R^{2} \quad R^{3}R^{4}
\end{array}$$

$$\begin{array}{c}
R_{1} \quad R^{4} \quad R^$$

In contrast, treatment of the β -hydroxysilane 1a with acid provides the other alkene isomer by an *anti* elimination pathway.

Thus either alkene is available from each diastereomer of a β -hydroxysilane 4. (27) To achieve a stereospecific preparation of an alkene, it is necessary to

(CH₃)₃Si H
$$n$$
-C₃H₇ C₃H₇- n
(99%) $E:Z = 8:92$

KH,
THF

 n -C₃H₇ H
 n -C₃H₇ H
 n -C₃H₇- n
(96%) $E:Z = 95:5$

perform the condensation of the α -silyl carbanion and carbonyl compound to provide the mixture of β -hydroxysilanes 1a and 1b (Eq. 2). The diastereomers must then be separated and one treated with acid, the other with base, to give the required alkene isomer. To overcome this problem, stereoselective routes to α -hydroxysilanes have been developed, many of which rely upon the stereochemical consequences associated with a particular system (Eq. 5). (28)

(CH₃)₃Si Si(CH₃)₃
$$\xrightarrow{\text{I. s-C}_{q}H_{p}\text{Li.}}_{\text{THF, -76°}}$$
 C₆H₅ Si(CH₃)₃ $\xrightarrow{\text{KH, THF}}_{\text{THF}}$ (5)

C₆H₅ Si(CH₃)₃

(94%) Δ^{3} E:Z = 9:87

Cyclic systems can impose stereochemical constraints which do not allow the oxygen and silicon atoms to adopt the required geometry for elimination to occur. (29-32) The epoxide 5 gives the allyl alcohol 6 as its silyl ether upon standing at room temperature, or more rapidly by treatment with dilute sulfuric acid. In contrast, the diol 7 is stable to acid, base, and fluoride ion. (33)

Another consequence of relative stereochemistry becomes apparent when a second leaving group is available in the system. Addition of potassium bis(trimethylsilyl)amide to the alcohol 8 results, after aqueous workup, chromatography, and removal of protecting groups, in a mixture of the allyl alcohols 9 and 10. (34) As the alcohol 9 is the major product, the *anti* elimination

with loss of alkoxide takes place preferentially over the syn pathway. These observations may be rationalized either by formation of a pentacoordinate silicon species 11, the geometry required for facile alkoxide elimination, or by transfer of the silicon from carbon to oxygen with concurrent formation of a carbanion (E_{1cb} mechanism) which then eliminates. As alkoxide elimination

affords only the Z isomer 9, the formation of a "free" carbanion seems unlikely. A reaction which probably occurs by a similar mechanism is the protiodesilylation of a β -hydroxysilane (Eq. 7). This substitution reaction proceeds at a rate faster than the competing elimination. (35)

A reaction similar to that of Eq. 6 is observed with the 8-O-methyl ether of 6,7-erythro-7,8-erythro-7-trimethylsilyltridecane-6,8-diol (12). Treatment of this alcohol 12 with potassium hydride yields the Z alkene 13 by a Peterson syn elimination, but the major product is the protected allyl alcohol 14 formed by an E2 mechanism. (36)

2.2. Electron-Withdrawing Substituents

The presence of an aryl group in conjugation with the α -silyl carbanion leads to direct formation of the alkene, and the intermediate β -hydroxysilane cannot

be trapped. Although a phenyl group can be considered an electron-withdrawing substituent, the conditions required for the formation of the requisite carbanion from the parent silane are strongly basic and invariably employ an additive or polar solvent, which renders the intermediate alkoxide 2 ionic in character, and in situ elimination is observed.

The ratio of (E)- and (Z)-stilbenes formed by condensation of the anion 15 with benzaldehyde is insensitive to temperature and other reaction medium

$$C_{6}H_{5}CH(SiR_{3})Si(CH_{3})_{3} \xrightarrow{MOR^{1}} C_{6}H_{5}\bar{C}HSiR_{3} \xrightarrow{C_{6}H_{5}CHSiR_{3}} C_{6}H_{5}$$

$$M = Li, Na, or K$$

$$+ C_{6}H_{5}$$

$$C_{6}H_{5}$$

$$C_{6}H_{5}$$

effects, such as counterion and the addition of inert salts, but varies greatly with the size of the silyl group. The amount of (Z)-stilbene formed increases as the size of the silyl group increases. (37, 38) These observations have been explained by steric approach control in the initial condensation step. (38)

When a conjugated electron-withdrawing group is present in the α -silyl carbanion, the intermediate β -silylalkoxide 2 cannot be trapped, and the basic elimination pathway (Eq. 3) is observed. However, studies with α -silyl carbanions which are also stabilized by an electron-withdrawing substituent alpha to the silyl moiety suggest that the basic elimination pathway need not be concerted in these cases.

The lithium enolate **16** derived from ethyl trimethylsilylacetate (**17**) reacts with carbonyl compounds to produce the α , β -unsaturated esters favoring the *E* isomer. (**39**, **40**) However, when the reaction (Eq. 8) is performed at –110°, or

$$(CH_3)_3SiCH_2CO_2C_2H_5 \xrightarrow{(C_6H_{11})_2NLi} (CH_3)_3SiCHLiCO_2C_2H_5 \xrightarrow{RCHO}$$

$$16 \\ RCH = CHCO_2C_2H_5$$

$$E \text{ major isomer}$$
(8)

better with a magnesium counterion, then the β -hydroxysilane 18 can be isolated. Reaction of the alcohol 18 with sodium hexamethyldisilazide leads mainly to the (*E*)- α , β -unsaturated ester, while addition of hexamethylphosphoric triamide (HMPA) to the magnesium enolate provides the *Z* isomer as the major product. (41) Clearly, a synchronous *syn* elimination cannot explain these findings.

$$(CH_{3})_{3}SiCH_{2}CO_{2}C_{2}H_{5} \xrightarrow{\text{1.1DA}, \\ \text{17}} \xrightarrow{\text{1.1DA}, \\ \text{17}} \xrightarrow{\text{1.1DA}, \\ \text{18}} \xrightarrow{\text{major}} \xrightarrow{\text{R}} CO_{2}C_{2}H_{5} \xrightarrow{\text{minor}} \\ (CH_{3})_{3}SiCH_{2}CO_{2}C_{2}H_{5} \xrightarrow{\text{THF}, -65^{\circ}} \\ \text{2. RCHO}} \xrightarrow{\text{3. MgBr}_{3}, -80^{\circ}} \xrightarrow{\text{4. HMPA, 0°}} (9)$$

The stereoselectivity observed with the preparation of α , β -unsaturated esters has been attributed to the relative stabilities of the rotamers of the ester enolates, (42, 43) and not to the geometry of the enolate or its mode of condensation. (44) Reaction of the lithium enolate derived from ethyl (diphenylmethylsilyl) propionate (19) with 2-methylpropanal results in a 60% yield of the unsaturated esters 20 and 21 in a 9:1 ratio. (43) The product distribution is derived from the rotamer 22a of the intermediate enolate 22, which is more stable than 22b. An alternative argument is that the stereoselectivity is controlled by formation of the kinetically preferred β -hydroxysilane 23, which is followed by a synchronous syn elimination. (44, 45)

Reaction of enolates derived from *tert*-butyl bis(trimethylsilyl)acetate (24) with aldehydes yield the α -trimethylsilyl- α , β -unsaturated esters 25. The

stereochemical outcome of this reaction is dependent upon both the size of the alkyl group in the aldehyde and the metal counterion. The larger the alkyl

$$C_{2}H_{5}CO_{2}C_{2}H_{5} \xrightarrow{\text{1. LDA, THF, } -78^{\circ}} CH_{3}CH[SiCH_{3}(C_{6}H_{5})_{2}]CO_{2}C_{2}H_{5}$$

$$19$$

$$\xrightarrow{\text{1. LDA, THF, } -78^{\circ}} i\text{-}C_{3}H_{7}CH(OLi)CH[SiCH_{3}(C_{6}H_{5})_{2}]CO_{2}C_{2}H_{5}$$

$$23$$

$$\longrightarrow i\text{-}C_{3}H_{7}CH[OSiCH_{3}(C_{6}H_{5})_{2}]CH \Longrightarrow C(OLi)OC_{2}H_{5}$$

$$22$$

$$\longrightarrow i\text{-}C_{3}H_{7}CH \Longrightarrow CHCO_{2}C_{2}H_{5}$$

$$(60\%) E(20): Z(21) = 9:1$$

group (R), the greater the selectivity observed. Counterions which impart considerable ionic character to the metal—oxygen bond lead preferentially to the thermodynamically more stable product (E)-25. In contrast, relatively covalent metal enolates form the other isomer (Z)-25 selectively. A mechanistic rationale is that either of the silyl groups can become syn to the alkoxide 26a or 26b. The preferred direction of rotation is governed by the nonbonding interactions with the alkyl group R; the larger this group, the greater the preference for counterclockwise rotation and formation of the E isomer. With a covalent enolate, formation of the chelate 27 is possible which,

$$(CH_3)_3Si \xrightarrow{O^-M^+} R \xrightarrow{t-C_4H_9O_2C} H$$

$$t-C_4H_9O_2C Si(CH_3)_3 \xrightarrow{t-C_4H_9O_2C} H$$

$$(CH_3)_3Si R$$

$$(CH_3)_3Si Si(CH_3)_3 \xrightarrow{t-C_4H_9O_2C} H$$

$$(CH_3)_3Si Si(CH_3)_3 \xrightarrow{H} R$$

$$(CH_3)_3Si \xrightarrow{O^-M^+} CO_2C_4H_9-t$$

$$(CH_3)_3Si \xrightarrow{O^-M^+} CO_2C_4H_9-t$$

$$(CH_3)_3Si CO_2C_4H_9-t \xrightarrow{t-C_4H_9O_2C} R$$

$$(CH_3)_3Si CO_2C_4H_9-t \xrightarrow{t-C_4H_9O_2C} R$$

if a least-motion pathway is assumed, leads preferentially to the conformer 26a and the Z isomer. (46)

In some examples, there is considerable evidence that a two-step elimination mechanism occurs. The lactone 28 reacts with lithium hexamethyldisilazide to give the α , β -unsaturated lactone 29. The intermediate 30, the enolate

$$(CH_3)_3Si \xrightarrow{O-M} (CH_3)_3Si \xrightarrow{O-M} (CH_3)_3Si \xrightarrow{O-M} (CH_3)_3Si \xrightarrow{CO_2C_4H_9-t} Si(CH_3)_3$$

$$(CH_3)_3Si \xrightarrow{CO_2C_4H_9-t} (CH_3)_3Si \xrightarrow{CO_2C_4H_9-t} (CH_2)_2Si \xrightarrow{CO_2C_4H_9-t} (CH_2$$

of 4,5-dihydro-3-[1 -(trimethylsiloxy)ethyl]-2(3H)-furanone, can be detected and disappears as the reaction proceeds. The silyl ether **30** is also formed by treatment of the β -hydroxysilane **28** with a catalytic amount of base. (47)

In certain cases, the initial condensation of the α -silyl carbanion may be controlled by the presence of α -heteroatom substituents (chelation control) in the carbonyl moiety. (48-50)

Condensation of the aluminum enolate obtained from the organoiron complex **31** with acetaldehyde affords a 1:1 mixture of the diastereomeric β -silylalcohols **32** and **33**. Only these two diastereomers, of the four possible, are formed. Base-catalyzed elimination from alcohols **32** and **33** results in a mixture of the enones **34** and **35** by syn elimination. (51)

Alkene 34 can be prepared selectively by stereochemical control of the silylation of the β -hydroxycarbonyl enolate from the unhindered face. (51)

When a two-step mechanism is invoked for the elimination, it is not only necessary for the silicon and oxygen atoms to adopt a favorable conformation, but the subsequent silanoxide elimination also has stereochemical requirements. The ester enolate of cyclopropane 36 does not eliminate, but can undergo reactions with electrophiles; the product ratio is a function of the stability of the configurationally labile pyramidal ester enolate. (52)

$$(CH_3)_3SiO \longrightarrow CO_2CH_3 \xrightarrow{LDA, THF, -78^\circ} (CH_3)_3SiO \longrightarrow OCH_3$$

$$(CH_3)_3SiO \longrightarrow OCH_3 \xrightarrow{E^*} (CH_3)_3SiO \longrightarrow CO_2CH_3$$

$$R^1 \longrightarrow CO_2CH_3 \longrightarrow CO_2CH_3$$

$$R^1 \longrightarrow CO_2CH_3$$

These arguments may be used to explain experimental observations, but it can still be difficult to apply them for the prediction of the stereochemical outcome of a specific reaction. (45) The exact mechanism of the Peterson olefination reaction still requires elucidation. Considerable evidence exists, however, to suggest that the elimination is not concerted but follows a two-step mechanism: attack of the alkoxide at silicon transfers the silyl group from carbon to oxygen, which is followed by elimination of silanoxide. With α -silylcarbonyl compounds, the intermediate carbanion is stabilized as an enolate (Eq. 10). A pentacoordinate silicon atom may also be invoked in the reaction (Eq. 3). Protiodesilylation is consistent with this two-step mechanism (Eq. 7), (35) while the formation of diols from α , β -epoxysilanes suggests that an anti elimination can occur under basic conditions. (53)

3. Scope and Limitations

To be a useful reaction for the stereoselective synthesis of alkenes, the Peterson reaction requires the stereospecific preparation of β -hydroxysilanes. As the presence of an electron-withdrawing group alpha to the silyl group promotes formation of the alkene under the conditions used for the condensation of the α -silyl carbanion with the carbonyl compound, the major thrust in the stereoselective preparation of β -hydroxysilanes has been with alkyl-substituted derivatives.

The success of the Peterson olefination reaction is dependent on the availability of α -silyl carbanions. Until recently, this was not a trivial problem to overcome—particularly for the formation of α -silyl carbanions substituted by alkyl groups alone.

3.1. Diastereoselective Synthesis of β -Hydroxysilanes

The stereoselectivity of the Peterson olefination reaction in the preparation of hydrocarbon alkenes depends upon the availability of just one β -hydroxysilane diastereomer. Thus, routes have been developed to overcome this shortcoming. In the strictest sense, these methods do not employ an $\alpha\text{-silyl}$ carbanion condensation with a carbonyl group and are therefore not Peterson olefination reactions. These routes do, however, expand the chemistry of β -hydroxysilanes and are included for that reason.

3.1.1.1. From a -Silyl Ketones

Reduction of the α -silyl ketone **37**, prepared as shown in Eq. 11, with dissobutylaluminum hydride (Dibal-H) follows Cram's rule (54) to give the *threo* isomer **38**-*threo* of the β -hydroxysilane **38**. (26, 27)

$$(CH_{3})_{3}Si \longrightarrow CO_{2}H \longrightarrow CO_{2}H$$

It is noteworthy that addition of ethyllithium to trimethylvinylsilane (39) and condensation of the resultant anion with butyraldehyde is diastereoselective, providing a 72:28 mixture of the *threo* and *erythro* isomers of the alcohol 38. This isomer ratio is evident from subsequent acid- or base-catalyzed elimination.

In addition to hydride, other nucleophiles can be added to α -silylcarbonyl compounds in a diastereoselective manner. (55) Reaction of the α -silyl ketone **40** with methyllithium affords the adduct **41** which, upon treatment with potassium *tert*-butoxide to effect elimination, affords the alkene (E)-**42**. Acid treatment of the intermediate **41** yields the isomeric alkene (Z)-**42**. (56, 57)

A further example is provided by an aldol method for the preparation of

either the (*E*)- or (*Z*)- β , γ -unsaturated ketone **43** from hydroxy ketone **44**. The reduction–oxidation procedure is necessary to avoid the formation of retro-aldol products during the base-catalyzed elimination. (58)

In contrast, attempted condensation of the boron enolate, derived in turn from a trimethylsilyl enol ether, with α -silyl aldehydes fails to give the α -hydroxysilane, the aldol product. (59)

Functionalized carbanions condense in the expected manner with α -silyl ketones. This method can be used to make the thermodynamically less stable β , γ -unsaturated ester isomers. (60)

Si(CH₃)₃

$$\xrightarrow{\text{LiCH}_3\text{Co}_2\text{C}_4\text{H}_9 \cdot t} \xrightarrow{\text{CO}_2\text{C}_4\text{H}_9 \cdot t} \xrightarrow{\text{HClO}_4} \xrightarrow{\text{THF}_1 \cdot 0^\circ}$$

$$CO_2\text{C}_4\text{H}_9 \cdot t$$

$$CO_2\text{C}_4\text{H}_9 \cdot t$$

$$CO_2\text{C}_4\text{H}_9 \cdot t$$

 α -Silyl ketones are preferentially deprotonated adjacent to the silyl group by an α -silyl carbanion acting as a hindered base. Subsequent condensation of the enolate with an aldehyde results in the formation of a single enone isomer. (61)

$$n-C_{4}H_{9} \longrightarrow Si(CH_{3})_{3} \xrightarrow{1. C_{5}H_{11}CHLiSi(CH_{3})_{3}}$$

$$(CH_{3})_{3}Si H$$

$$n-C_{4}H_{9} \longrightarrow C_{8}H_{17}-n \xrightarrow{3. NH_{4}Cl} n-C_{4}H_{9} \longrightarrow C_{8}H_{17}-n$$

$$(82\%)$$

Alkenes are also available from the reaction of hydride donors (62) and organometallic reagents with α -silyl esters. (63)

$$n-C_8H_{17}CHCO_2C_2H_5 \xrightarrow{1. n-C_3H_1MgBr} CH_{3}$$

$$SiCH_3(C_6H_5)_2 \xrightarrow{3. KOC_4H_6-t} H C_3H_7-n$$

$$(52\%) E:Z = 99:1$$

The Lewis acid silyl enol ether variation of the aldol reaction provides the β -hydroxysilane 45 from the lactone silyl enol ether 46 through the preferred six-membered transition state 47. (47) Subsequent protection of the hydroxy group and reduction with lithium aluminum-hydride provides the β -hydroxysilane

8, whose reactions have already been discussed (Eq. 6). (34)

3.1.1.2. From Epoxides and Diols

 α , β -Epoxysilanes provide some useful methods for the preparation of β -hydroxysilanes because a nucleophile attacks at the carbon atom bonded to silicon under conditions of electrophilic catalysis. (30, 35, 59, 64-71)

Reaction of an α , β -epoxysilane with a Grignard reagent brings about a rearrangement to produce an α -silyl carbonyl compound which then reacts

$$C_2H_5$$
 C_2H_5
 C_3
 C_2
 C_3
 C_4
 C_5
 C_5
 C_5
 C_7
 C

with the organometallic reagent to form predominantly the *erythro* β -hydroxysilane. (72)

Condensation of an α , β -epoxysilane with an organocuprate results in the regio- and stereoselective formation of β -hydroxysilanes. (73)

$$(CH_{3})_{3}Si \xrightarrow{H} \xrightarrow{MCPBA} \xrightarrow{CH_{2}Cl_{3}} \xrightarrow{H-1} \xrightarrow{(n-C_{3}H_{3})_{2}CuLi, -78^{\circ}} \xrightarrow{(C_{3}H_{3})_{2}O} \xrightarrow{(CH_{3})_{3}Si \xrightarrow{H} HOH} \xrightarrow{(R-C_{3}H_{3})_{2}O} \xrightarrow{(R-C_{3}H_{3})_{2}O}$$

Oxidation of the vinylsilane 48 provides two alternative methods for the preparation of the cyclohexanone enol ether 49. This methodology can be extended to the preparation of the unstable cyclooctene derivative 50. (74)

The stereospecific elimination of the Peterson olefination reaction provides two useful synthetic methods for the inversion of alkenes. (75) Both methods rely on the stereospecific opening of an epoxide by a silyl alkali–metal reagent. (30, 76) Although a mixture of regio- and diastereoisomers is formed in the initial

condensation step, the inversion at this center and subsequent *syn* elimination ensure stereospecificity. (77, 78)

(CH₃)₃Si O OH

$$R^{1} \longrightarrow R^{2} \longrightarrow R^{3} \longrightarrow R^{3} \longrightarrow R^{3} \longrightarrow R^{3} \longrightarrow R^{4} \longrightarrow R^{5}(CH_{3})_{2}Si \longrightarrow R^{4} \longrightarrow R^{5}(CH_{3})_{2}Si \longrightarrow R^{4} \longrightarrow R^{4} \longrightarrow R^{5}(CH_{3})_{2}Si \longrightarrow R^{4} \longrightarrow R^{4} \longrightarrow R^{5}(CH_{3})_{2}Si \longrightarrow R^{4} \longrightarrow R^{5}(CH_{3})_{2}Si \longrightarrow R^{4} \longrightarrow R^{5}(CH_{3})_{2}Si \longrightarrow R^{5} \longrightarrow R^{5}(CH_{3})_{2}Si \longrightarrow R^{5} \longrightarrow R^{5}(CH_{3})_{2}Si \longrightarrow R^{5} \longrightarrow R^{5}(CH_{3})_{2}Si \longrightarrow R^{5} \longrightarrow R^{5}(CH_{3})_{2}Si \longrightarrow R^{5}(CH_{3$$

Oxidation of the allylsilane **51** yields the diol **52** stereoselectively. Elimination by an acid catalyst affords the allyl alcohol **53**. (79)

3.1.1.3. From Unsaturated Silanes

Applications of Cram's rule have made significant contributions to the stereoselective synthesis of β -hydroxysilanes, particularly for the preparation of functionalized silanes. Deprotonation of allyltrimethylsilane (54) with n-butyllithium, followed by treatment with di- η ⁵-cyclopentadienyltitanium(III) chloride results in the formation of the complex

(55). This complex reacts with aldehydes to provide the β -hydroxysilane 56 stereospecifically after acid treatment and air oxidation. The product 56 can be transformed into the (*E*)- or (*Z*)-diene by use of the appropriate acidic or basic elimination conditions. (80, 81)

$$\begin{array}{c|c}
Si(CH_3)_3 & \frac{1. \ n \cdot C_4 H_9 Li, \ THF,}{HMPA} & \\
\hline
1. \ C_4 H_5 CHO \\
\hline
2. \ HCl, \ H_2O \\
\hline
3. \ O_2
\end{array}$$

$$\begin{array}{c|c}
Si(CH_3)_3 \\
\hline
Ti(C_5 H_5)_2
\end{array}$$

$$\begin{array}{c|c}
Si(CH_3)_3 \\
\hline
Ti(C_5 H_5)_2
\end{array}$$

$$\begin{array}{c|c}
Si(CH_3)_3 \\
\hline
Ti(C_5 H_5)_2
\end{array}$$

$$\begin{array}{c|c}
Si(CH_3)_3 \\
\hline
Si(CH_3)_3 \\
\hline
Si(CH_3)_3
\end{array}$$

$$\begin{array}{c|c}
KH \\
THF
\end{array}$$

$$\begin{array}{c|c}
C_6 H_5
\end{array}$$

$$\begin{array}{c|c}
Si(CH_3)_3
\end{array}$$

$$\begin{array}{c|c}
(12)
\end{array}$$

$$\begin{array}{c|c}
Si(CH_3)_3
\end{array}$$

$$\begin{array}{c|c}
KH \\
THF
\end{array}$$

$$\begin{array}{c|c}
C_6 H_5
\end{array}$$

$$\begin{array}{c|c}
Si(CH_3)_3
\end{array}$$

Similar selectivity is observed with a magnesium counterion for an analogous system (Eq. 5). (28) The stereoselectivity in this case may be attributed to the preferential formation of the transition state **57** over **58**.

A cyclic transition state provides the regioselectivity for the anion derived from 1,3-bis(trimethylsilyl)propyne (59). (82)

$$(CH_3)_3SiC \Longrightarrow CSi(CH_3)_3 \xrightarrow{\begin{array}{c} 1. \ i \cdot C_4H_4Li, \ THF, \ -78^{\circ} \\ \hline \\ 59 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow CSi(CH_3)_3 \end{array}} \xrightarrow{\begin{array}{c} C_6H_{11} \\ \hline \\ CC \Longrightarrow$$

Stereoselective control of the addition of the anion to carbonyl compounds can arise from the system itself as in cyclic compounds (83) or from heteroatom control when it is adjacent to the carbonyl group. (48-50, 84)

Stereoselective additions to carbon–carbon multiple bonds, as in the acetylene 60, provide β -hydroxysilanes with various relative stereochemistries. (36)

$$n-C_{5}H_{11}C = CSi(CH_{3})_{3} \xrightarrow{\frac{1. \ i-C_{4}H_{9}MgBr}{(C_{5}H_{1})_{3}TiCl_{3}, \ (C_{5}H_{3})_{2}O}} \xrightarrow{n-C_{5}H_{11}} \xrightarrow{Si(CH_{3})_{3}} C_{5}H_{11}-n$$

$$n\text{-}C_{5}H_{11}C \equiv CSi(CH_{3})_{3} \xrightarrow{\begin{array}{c} 1. \text{ Dibal-H, } C_{6}H_{14} \\ \hline 2. I_{2} \\ \hline 60 \end{array}} \xrightarrow{\begin{array}{c} HO \\ \hline 2. I_{2} \\ \hline 4. n\text{-}C_{5}H_{11}CHO \end{array}} n\text{-}C_{5}H_{11}$$

acac = CH₃C(O⁻)=CHCOCH₃

3.1.1.4. Miscellaneous Methods

Many stereoselective reactions provide the opportunity for the synthesis of β -hydroxysilanes. One such example is the [2,3]-Wittig rearrangement. (85)

$$C_{2}H_{5} \longrightarrow Si(CH_{3})_{3}$$

$$C_{2}H_{5} \longrightarrow Si(CH_{3})_{3}$$

$$C_{2}H_{5} \longrightarrow Si(CH_{3})_{3}$$

$$C_{3}H_{5} \longrightarrow C_{2}H_{5} \longrightarrow Si(CH_{3})_{3}$$

$$C_{3}H_{5} \longrightarrow C_{2}H_{5} \longrightarrow$$

Another such reaction is the Baeyer–Villiger oxidation of γ -ketosilanes with m-chloroperoxybenzoic acid (MCPBA) followed by hydrolysis of the lactone. (86)

3.2. Preparation of α -Silyl Carbanions

In th α -silyl carbanions are discussed. Each section considers one type of functional group, or heteroatom, on the same carbon atom as the silyl moiety. In certain cases, additional examples with remote functionality are included when that functional group influences the outcome of a reaction. The preparation and reactions of α -silyl carbanions have been reviewed previously. (21, 87, 88)

3.2.1. Alkyl and Aryl Substituents

3.2.1.1.1. Direct Deprotonation

The simplest method for the preparation of an α -silyl carbanion is the direct deprotonation of the parent silane by a base. Unfortunately, this procedure is only generally applicable when an electron-withdrawing group is also present to stabilize the resultant carbanion.

Although silicon does stabilize an α -carbanion, (89) it does not have a marked effect on the kinetic rate of deprotonation. Treatment of tetramethylsilane with n-butyllithium—N, N, N -tetramethylethylenediamine (TMEDA) complex in hexane gives, after 4 days, a 36% yield of the α -silyl carbanion as detected by subsequent reaction with an electrophile. The analogous reaction with n-butyltrimethylsilane gives about the same degree of deprotonation. (90)

$$(CH_3)_4Si \xrightarrow{\text{n-C_4HgLi, TMEDA}\atop{C_6H_{14}, 4 \text{ d}}} (CH_3)_3SiCH_2Li \xrightarrow{(CH_3)_3SiCH} (CH_3)_3SiCH_2Si(CH_3)_3$$
(36%)

Direct deprotonation in the alkyl series is not a viable method for the preparation of the requisite metalated derivative. However, arylsilanes can be directly deprotonated in good yield under strongly basic conditions. For example, benzyltrimethylsilane (61) is deprotonated by *n*-butyllithium in hexamethylphosphortriamide (HMPA). (91, 92) An analog of the silane 61, benzyltriphenylsilane, provides additional stabilization to the carbanion owing to

$$C_6H_5CH_2Si(CH_3)_3 \xrightarrow{n \cdot C_4H_9Li} C_6H_5CHLiSi(CH_3)_3 \xrightarrow{C_6H_5CHO}$$

$$C_6H_5CH = CHC_6H_5$$

$$C_6H_5CH = CHC_6H_5$$

$$(50\%) E: Z = 1:1$$

the aryl groups on silicon, and deprotonation is achieved by n-butyllithium in ether. (93) Stabilization of the anionic species by two aryl groups as in 62 also

facilitates the deprotonation. (94) This approach is useful for the preparation of sulfines (Eq. 28, p. 73). An example is known where a functionalized silyl moiety $[(t-C_4H_9)_2BrSi]$ does not interfere with the deprotonation. (95)

Si(CH₃)₃

$$\xrightarrow{1. n-C_4H_4Li, \text{ TMEDA, THF, 0}^{\circ}} CH_3 C_6H_4C_6H_5-p$$

$$\xrightarrow{2. p-C_4H_5C_6H_4COCH_3}$$

The pyridine analog **63** is deprotonated by the relatively mild base lithium diisopropylamide

(LDA). (96) The nitrogen atom is probably playing a significant role through complex formation and this example is, therefore, discussed in detail with nitrogen-containing α -silyl carbanions.

The ability of an aryl group to stabilize an adjacent carbanion allows a one-pot procedure to be performed for the introduction of the silyl moiety and the subsequent condensation with a carbonyl compound. (97)

$$\frac{1. \text{ n-C}_4 \text{H}_4 \text{Li}}{2. \text{ (CH}_3)_3 \text{SiCl}}$$

$$\text{Si(CH}_3)_3 \xrightarrow{1. \text{ n-C}_4 \text{H}_4 \text{Li}}$$

$$C_6 \text{H}_5$$

$$C_6 \text{H}_5$$

$$(41\%)$$

On occasion, the acidity of protons adjacent to a silyl group can be enhanced by a neighboring group. Thus, silane **64** is deprotonated by *n*-butyllithium in tetrahydrofuran (THF) at -50° within 8 minutes, as detected by further reaction of the carbanion. (98) The silyl group increases the kinetic acidity of the α -methylene group since unsubstituted diphenyl-*tert*-butylphosphine oxide is

very difficult to deprotonate. The addition of TMEDA to the organolithium 65, or reaction of the parent silane 64 with base in the presence of this complexing agent, affords the anion adjacent to the phosphorus group 66. Treatment of this anion 66 with benzaldehyde yields an allylsilane through a Horner–Wittig reaction. (99) The generality of this reaction (Eq. 13) remains to be established. (100)

$$(C_6H_5)_2P$$

$$Si(CH_3)_3$$

$$(C_6H_5)_2P$$

$$Si(CH_3)_3$$

$$(C_6H_5)_2P$$

$$C_6H_5$$

Sometimes the direct deprotonation approach fails. Even the use of strong bases with 67 does not effect an intramolecular Peterson reaction. (101)

3.2.1.1.2. Formation of Grignard Reagents

 α -Halosilanes are converted into the corresponding Grignard reagents by classical techniques. (102) Because of trimethylsilylmethyl chloride's (68) availability, (21) trimethylsilylmethylmagnesium chloride (69) is by far the most commonly used reagent in this class. Grignard reagent 69 is useful for methylenations and provides an alternative

$$(CH_3)_3SiCH_2Cl \xrightarrow{Mg} (CH_3)_3SiCH_2MgCl \xrightarrow{1. R^1R^2CO} \underbrace{2. H_2O}$$

$$68 \qquad \qquad 69$$

$$(CH_3)_3SiCH_2C(OH)R^1R^2 \xrightarrow{acid} CH_2 = CR^1R^2$$

to the classic Wittig reagents. (103-108) Since the metal counterion is magnesium, the intermediate β -hydroxysilane can be isolated. (91, 92) Unfortunately, higher homologs of the α -halosilane 68 are often tedious or troublesome to prepare. (109)

An example of the use of the Grignard reagent **69** for methylenation is provided as part of a synthesis of periplanone-B, the sex excitant pheromone of the American cockroach. (110)

OSi(CH₃)₂C₄H₉-t
$$\frac{1. 69. (C_2H_3)_2O}{2. \text{ KH, THF}}$$
EEO
$$EE = \text{ethoxyethyl}$$
OSi(CH₃)₂C₄H₉-t

The ability to isolate the β -hydroxysilane has been used to effect a stereoselective reduction in an approach to a substituted denudatine system. (111, 112)

The Grignard reagent 69 is sterically demanding and does not add to hindered ketones, such as 70, (113-115) but does react with others, such as 71, when a Wittig reagent fails. (116)

Preferential axial attack (93%) is observed between the α -silyl Grignard reagent 69 and the bicyclic ketone 72. Forcing conditions (NaH, THF, 150°, 10 hours) must be used to effect elimination. (117)

Condensation of 69 with acrolein results in 1,2 addition, (118, 119) while reaction

OSi(CH₃)₂C₄H₉-
$$t$$

$$70$$

$$72$$

with conjugated ketones favors a 1,4 mode of addition. (120) The enal β -cyclocitral (73) reacts in a 1,2 manner to yield the β -hydroxysilane 74. Subsequent treatment of 74 with sulfuric acid in the presence of p-toluenesulfonic acid affords the pure diene 75. (121) In contrast, reaction of the silane 74 with sulfuric acid alone, or with potassium hydride in tetrahydrofuran, results

CHO

(CH₃)₃SiCH₂MgCl
(C₂H₃)₂O

OH

Si(CH₃)₃

H₂SO₄

$$p$$
-CH₂C₄H₃SO₃H₁

THF

(96%)

74

(96%)

in significant amounts of the silyl diene, indicating that dehydration is a significant competing reaction pathway in this system. (122)

Reaction of the Grignard reagent **69** with esters substituted adjacent to the carbonyl group leads to α -silyl ketones; (123) these latter compounds can then react with a second equivalent of **69** if the steric requirements are not too overpowering. (100) In a similar manner, reaction of a lactone with excess reagent **69** provides an ω -hydroxyallylsilane. (124)

3.2.1.1.3. From Vinylsilanes

Alkyllithiums add to vinylsilanes regioselectively to provide α -silyl carbanions, (125, 126) which can then react with a carbonyl compound. The addition is clean with simple vinylsilanes, (26) particularly if the

$$R_{3}Si \longrightarrow R_{1}Li \longrightarrow R_{3}Si \longrightarrow R_{3}Si \longrightarrow R_{3}Si \longrightarrow R_{3}Si \longrightarrow R_{2}R_{3}Si \longrightarrow R_{3}Si \longrightarrow$$

silyl group is triphenylsilyl (Eq. 14, $R = C_6H_5$). (91-93, 127) The addition is susceptible to steric effects in the alkyllithium and at both alkene termini. (128) The methodology provides a route to the sex pheromone of the gypsy moth (Disparlure). (91)

Grignard reagents do not add to vinylsilanes unless electron-donating

Li
$$\frac{1. \text{ CH}_2\text{CHSi}(C_4H_5)_{3,}(C_2H_5)_2\text{O}}{2. n \cdot C_{10}H_{3,2}\text{CH, beat}}$$
 $C_{10}H_{21}-n$
 $C_{10}H_{21}-n$
 $C_{10}H_{21}-n$

groups are present in the silyl moiety. (129, 130) Subsequent addition of a carbonyl group to the Grignard adduct results in reduction of the carbonyl group to give an alcohol. (91)

$$(C_{2}H_{5}O)(CH_{3})_{2}Si \xrightarrow{i\cdot C_{3}H_{3}H_{2}O} (C_{2}H_{5}O)(CH_{3})_{2}Si \xrightarrow{C_{3}H_{7}-i} BrMg \xrightarrow{H} O = C$$

$$C_{2}H_{5}O)(CH_{3})_{2}Si \xrightarrow{C_{3}H_{7}-i} HO - C - H$$

Vinylsilanes contain an alkene functional group in addition to the silyl moiety. This unsaturation can be used to prepare functionalized alkenes such as allenes (Eq. 17, p. 36). Vinylsilanes can, however, provide useful routes to alkenes based on α -metallovinylsilanes. (131-133)

In some cases the Peterson olefination reaction may lead to an alkene when a Wittig reaction fails because of enolization of the carbonyl compound caused by the basic phosphorus ylide. While neither ethylidenetriphenylphosphorane nor 1-(trimethylsilyl)ethylmagnesium chloride forms an addition compound with the ketone 76, the use of α -trimethylsilylvinyllithium (77) circumvents this problem and provides the ketal 78 after acid-catalyzed cyclization. The alkene is unmasked by Lewis acid treatment. (83) An alternative approach,

which allows variation in the alkene substitution pattern, relies upon the condensation of the vinyllithium reagent **77** with aldehydes through the intermediary of **79** and **80**. (134-136)

This method has been elaborated to prepare α -silylenones for use in an annelation procedure. (137)

The acetylation procedure (Eq. 16) provides an alternative method for the formation of alkenes from β -hydroxysilanes by way of the vinylsilane. (138, 139) The silane **81** is stable to hydrochloric acid, while use of potassium hydride results in the formation of the base-catalyzed isomerization product **82** in addition to the simple elimination product **83**. In contrast, treatment of the alcohol **81** with acetyl chloride in acetic acid provides **83** as the sole product. (140)

It is possible, however, for β -hydroxysilanes to be esterified—for example, with propionic anhydride in the presence of triethylamine and 4-(dimethylamino)pyridine (DMAP)—and used in subsequent transformations without elimination occurring. (141)

$$C \equiv C$$

$$C = CH$$

$$C \equiv CH$$

$$Si(CH_3)_3$$

$$S1$$

$$C \equiv CH$$

$$C$$

3.2.1.1.4. α -Silylalkyllithiums from Halides

The halogen atom of an α -halosilane can be transmetalated by an alkyllithium. (21, 93) The methodology provides a

$$(C_6H_5)_3SiCH_2Br \xrightarrow{n\cdot C_4H_9Li} (C_6H_5)_3SiCH_2Li$$

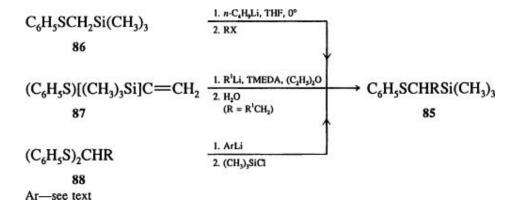
$$\xrightarrow{C_6H_5CHO} (C_6H_5)_3SiCH_2CHOHC_6H_5$$
(81%)

useful route to α -silyl carbanions as illustrated by the formation of cyclopropyl derivatives. (142, 143)

Use of lithium metal, rather than an alkyllithium, also results in the formation of an α -silylalkyllithium from an α -halosilane. (87, 144, 145) As with the Grignard approach, the general availability of α -halosilanes, other than the simple

$$\begin{array}{c|c}
C_6H_5 & O \\
& Si(CH_3)_3 \xrightarrow{n \cdot C_4H_3Li} C_6H_5 & O \\
\hline
C_6H_5 & O \\
\hline
C_6H_5 & O
\end{array}$$

$$\begin{array}{c|c}
Si(CH_3)_3 \\
C_6H_5 & O \\
\hline
C_6H_5 & O
\end{array}$$


$$\begin{array}{c|c}
C_6H_5 & O \\
\hline
C_6H_5 & O
\end{array}$$
(55%)

ones such as those derived from benzylsilanes, (109, 146) seriously curtails the utility of this displacement method. Thus various functional groups or heteroatoms can be used in place of the halogen to facilitate both introduction of the silyl moiety and a transmetalation reaction.

The reactions of α -silylalkyllithium reagents are very similar to those described for the analogous Grignard reagent. The use of the titanium reagent **84**, formed from the corresponding alkyllithium, has been advocated to minimize proton abstraction reactions. (147)

3.2.1.1.5. α -Silylalkyllithiums from Sulfides

A sulfide provides a wide variety of approaches for the introduction of the silyl group and the subsequent formation of the α -silyl carbanion. The required α -silylsilane **85** is obtained by alkylation of the anion of phenylthiotrimethylsilylmethane (**86**), (148-150) by addition of an alkyllithium to the alkene **87**, (151-153) or by silylation of the lithio derivative obtained from a bis(phenylthio)acetal **88**. (153-155) The latter two methods also can be used for the preparation of dialkyl analogs **89**.

The replacement of the phenylthio group by a lithium atom is accomplished with a variety of reagents which include lithium naphthalenide (154, 156, 157) and lithium 1-(dimethylamino)naphthalenide. (155) The latter reagent has the advantage that the aryl byproduct, 1-(dimethylamino)naphthalene, can be easily

$$\begin{array}{c|c}
R & SC_6H_5 & R^2 \\
R^1 & Si(CH_3)_3 & R^2 & R^3 \\
R^2 & Si(CH_3)_3 & R^3 & R^3 \\
R^3 & (CH_3)_3Si & OH
\end{array}$$
89 or 85; $R^1 = H$

Ar—see text

separated from the desired product. (158) In contrast, lithium naphthalenide is prepared from readily available, inexpensive precursors. (159, 160) In many cases, separation of the naphthalene byproduct is not difficult; (157) it is not, however, always trivial. (136, 161, 162) Other reagents that have been used to effect reductive lithiation of sulfides are lithium di-*tert*-butylbiphenyl (163) and tri-*n*-butylstannyllithium. (164)

The elimination of the β -hydroxysilane can be accomplished by a one-pot reaction sequence through careful choice of workup conditions. (157)

3.2.1.1.6. α -Silylalkyllithiums from Selenides

A selenium group may be exchanged for lithium by treatment of the selenide with an alkyllithium. (165) Thus a one-pot sequence for the introduction of the silyl group and subsequent carbanion formation is a straightforward procedure.

Cyclopropylidene derivatives are available by this protocol, although in some cases elimination from the β -hydroxysilane with potassium is not clean. The required transformation is accomplished by thionyl chloride followed by fluoride ion. (147)

3.2.1.1.7. α -Silylalkyllithiums from Silanes

Silicon itself can be displaced from a bis(silane) to provide an α -silyl carbanion. An alkali metal alkoxide in the polar solvent HMPA is required to achieve this transformation. (166) If two different silyl groups are present, the less sterically hindered group is preferentially

$$[(CH_3)_3Si]_2CHC_6H_5 \xrightarrow{1. \text{NaOCH}_3, \text{ HMPA}} C_6H_5CH = C(C_6H_5)_2$$
(79%)

cleaved. (37)

$$C_6H_5CH[Si(CH_3)_3][Si(C_6H_5)_3] \xrightarrow{1. KOC_4H_9 - I, HMPA} C_6H_5CH = CHC_6H_5$$
(ca. 100%) $E: Z = 52:1$

3.2.1.1.8. α -Silylalkyllithiums from Stannanes

In a manner very similar to that used for selenides, stannanes are readily transmetalated by alkyllithiums. The approach provides a useful method for the preparation of trimethylsilylmethyllithium (90), (167) which, in addition to reacting with aldehydes and ketones, reacts with carboxylic acids, esters, and acid chlorides to give α -trimethylsilyl

$$(CH_3)_3SiCH_2Sn(C_4H_9-n)_3 \xrightarrow{n\cdot C_4H_9Li, THF} (CH_3)_3SiCH_2Li$$
90

1. \(CH_2\)
2. \(H_2SO_4, 24 \) \(CH_2\)
(60%)

ketones in good yields. (123, 168)

3.2.2. Preparation of α -Silyl Carbanions Containing Unsaturation (169) 3.2.2.1.1. From Vinylsilanes

 α -Lithiovinylsilanes are readily available by metalhalogen exchange, and react with a wide variety of electrophiles including aldehydes and ketones (Eq. 16). (132, 133, 136, 137, 170) The analogous Grignard reagents are also available.

The allyl alcohols 91 (cf. 79) are resistant to the conditions usually employed for the elimination of β -hydroxysilanes. The allene is prepared by treatment of the alcohol 91 with thionyl chloride to give the rearranged allyl chloride (cf. 80), which is then followed by fluoride ion in dimethyl sulfoxide. (171, 172)

$$(C_{6}H_{5})_{3}Si \xrightarrow{n \cdot C_{4}H_{9}Li} CI_{THF} Li \xrightarrow{n \cdot C_{10}H_{21}CHO} II_{HO} II_{II} II$$

3.2.2.1.2. From Allylsilanes

In these cases, an allyl anion is prepared and, as a consequence, it is more stable than the vinyl anions just described. Allyltrimethylsilane (54) is deprotonated by *n*-butyllithium–TMEDA complex in ether, (173) or by sec-butyllithium–TMEDA in tetrahydrofuran. (174) An analogous

Grignard reagent is available from the bromide. (175)

$$(C_6H_5)_3Si$$
 \longrightarrow
 $(C_6H_5)_3Si$
 \longrightarrow
 ^+MgBr
 g_3

Ambident anions 92 and 93 react with carbonyl compounds at the γ position and thus the Peterson reaction is not feasible. (174, 175) However, the regioselectivity can be changed by the use of additives, such as magnesium bromide (Eqs. 5 and 12). Elimination in these cases is accomplished by thionyl or

acetyl chloride followed by fluoride ion. (176) Of course, in some cases the allyl anion is symmetrical and the regioselectivity problem does not exist.

When the degree of conjugation is increased, as in the anion **94**, the principal reaction with a carbonyl compound occurs at the ε position. The anions **95** and **96** afford polyenes when condensed with carbonyl compounds since both termini bear silyl groups. (177) Even larger conjugated systems are possible (Eq. 18). (178)

3.2.2.1.3. From Silylacetylenes

Addition of an aldehyde to the lithio derivative of

1,3-bis(triisopropylsilyl)propyne (97) results in a *cis* enyne. When HMPA is used as cosolvent, the stereoselectivity is changed in favor of the *trans* enyne. This selectivity is rationalized by the allenic anion being the most reactive species in tetrahydrofuran, while the propargylic anion is the predominate species reacting in the presence of HMPA. (179)

$$(i-C_3H_7)_3SiC = CCH_2Si(C_3H_7-i)_3 \xrightarrow{1. n-C_4H_2Li, THF_1-20^\circ} R C = C$$

$$\downarrow C$$

Deprotonation of the \triangle ⁴-(4*H*-pyranyl)-substituted acetylene **98** results in the highly delocalized anion **99**. This organolithium **99** reacts with carbonyl compounds to provide cumulenes **100**. (180)

3.2.2.2. Preparation of α -Silyl Carbanions Containing Carbonyl Groups α -Silyl ketones and aldehydes are relatively labile compounds which are desilylated by many nucleophilic and electrophilic reagents. (181) This property, together with the indirect methods that have been used for the preparation of α -silyl ketones such as silylation of the enolate, usually results in reaction at the oxygen center. (13) Thus, α -silylcarbonyl compounds have not found widespread application in the Peterson olefination reaction. Methods that are successful for the synthesis of α -silyl ketones include the addition of a cuprate derived from trimethylsilylmethylmagnesium chloride (69) and an acid chloride, (123, 182, 183) isomerization of α , β -epoxysilanes, β -silylallyl alcohols, (184, 185) or a silyl enol ether, (186) and reactions of α -selenosilyl

enol ethers. (187)

An example of the use of α -silyl ketones in synthesis is provided by a route to the macrolide narbonolide. (188)

Si(CH₃)₃

$$C_6H_5 \longrightarrow C_6H_5$$

$$Si(CH3)3
$$C_6H_5 \longrightarrow C_6H_5$$

$$OC_6H_5 \longrightarrow C_6H_5$$

$$OC_6H$$$$

3.2.2.3.1. α -Silyl Esters (189)

Problems associated with α -silyl esters are similar to those with α -silyl ketones—namely, a labile silyl group and a preference for O-silylation of the ester enolate. (190) The routes to α -silyl esters are more direct than those to their ketonic counterparts.

100

The first synthesis of ethyl trimethylsilylacetate (17) resulted from reaction of trimethylsilylmethylmagnesium chloride (69) with ethyl chloroformate. (191) More general approaches have since been developed.

 α -Silyl esters are available from a modified Reformatsky reaction of the α -bromoester with a silyl chloride. (192) Low yields are, however, obtained when other α -substituents are present in the ester or if a large, bulky silyl chloride is used.

$$CI \longrightarrow (CH_3)_3Si \longrightarrow (CH_3)_3Si$$

Silylation of ester enolates, such as that derived from ethyl acetate, results in a mixture of the *O*- and *C*-silylated products. In the presence of HMPA, the

amount of *C*-silylation is augmented. (193) The degree of *O*-silylation is increased by the use of higher temperatures (0°) and trimethylsilyl chloride

LiICA = lithium N-isopropylcyclohexylamide

as electrophile. (194)

When a *tert*-butyl ester is employed, the steric bulk of this alkyl group promotes C-silylation, often to the extent that O-silylation is effectively excluded. (193) Alkylation of the enolate derived from an α -silyl ester allows higher homologs

$$CH_{3}CO_{2}C_{4}H_{9}-t \xrightarrow{1. \text{ LiICA, THF, } -78^{\circ}} (CH_{3})_{3}SiCH_{2}CO_{2}C_{4}H_{9}-t$$

$$(98\%)$$

$$101$$

$$+ CH_{2}=C(OC_{4}H_{9}-t)OSi(CH_{3})_{3}$$

$$(2\%)$$

to be prepared. (195) An alternative procedure is provided by silylation of an ester enolate with chlorodiphenylmethylsilane. (196) This regioselectivity can be

$$C_2H_5CO_2C_2H_5 \xrightarrow{1. LDA, THF, -78^{\circ}} (C_6H_5)_2CH_3SiCH(CH_3)CO_2C_2H_5$$
(93%)

attributed to softer acid characteristics of the silyl chloride rather than steric effects; the addition of HMPA increases the amount of *O*-silylation.

Condensation of an aldehyde with ethyl trimethylsilylacetate (17) in the presence of a base catalyst leads to formation of 102, the silyl ether of the β -hydroxyester. (197) This ether is eliminated stereoselectively by sodium hexamethyldisilazide. (41)

$$C_6H_5CHO + (CH_3)_3SiCH_2CO_2C_2H_5 \xrightarrow{NaOH} (CH_3)_3SiOCH(C_6H_5)CH_2CO_2C_2H_5$$
 (19)

The mechanism of formation of the silyl ether **102**, as shown in Eq. **19**, is open to speculation; it could involve desilylation to achieve enolate formation.

Treatment of ethyl trimethylsilylacetate (17) with lithium dicyclohexylamide (LiCA) or lithium diisopropylamide provides the ester enolate 16, which upon subsequent reaction with aldehydes or ketones, provides the α , β -unsaturated esters directly. (40, 198-200)

$$(CH_3)_3SiCH_2CO_2C_2H_5 \xrightarrow{LDA \text{ or LiCA}}$$
17
$$(CH_3)_3SiCH = C(OLi)OC_2H_5 \xrightarrow{C_6H_5CHO} C_6H_5CH = CHCO_2C_2H_5$$
16
$$(84\%) E: Z = 3:1$$

The *tert*-butyl ester **101** reacts in an analogous manner. (201, 202) A variant of this approach, using an acylimidazole in place of a carbonyl compound, provides a route to β -ketoesters. (203)

$$(CH_3)_3SiCH_2CO_2C_4H_9-t$$

101

CHCO₂C₄H₉-t

(95%)

The enolates of α -silyl esters are also obtained by the copper-catalyzed addition of Grignard reagents to methyl 2-(trimethylsilyl)acrylate (103). Subsequent addition of a carbonyl compound results in overall formation of an α , β -unsaturated ester. (204)

$$= \underbrace{\begin{array}{c} \text{Si}(\text{CH}_3)_3 \\ \text{CO}_2\text{CH}_3 \end{array}}_{\text{CuCl, (C_2H_3)_2O}} \underbrace{\begin{array}{c} \text{C}_6\text{H}_5 \\ \text{CH}_3\text{O} \end{array}}_{\text{CH}_3\text{O}} \underbrace{\begin{array}{c} \text{Si}(\text{CH}_3)_3 \\ \text{C}_4\text{H}_5\text{CHO} \end{array}}_{\text{CM}_3\text{CH}_3} \underbrace{\begin{array}{c} \text{C}_6\text{H}_5 \\ \text{CO}_2\text{CH}_3 \end{array}}_{\text{CW}_3\text{CH}_3} \underbrace{\begin{array}{c} \text{C}_6\text{H}_5 \\ \text{CW}_3\text{CH}_3 \end{array}}_{\text{CW}_3\text{CH}_3} \underbrace{\begin{array}{c} \text{C}_6\text{H}_5 \\ \text{CW}_3\text{CH}_3} \underbrace{\begin{array}{c} \text{C}_6\text{H}_5 \\ \text{CW}_3\text{CH}_3 \end{array}}_{\text{CW}_3\text{CH}_3} \underbrace{\begin{array}{c} \text{C}_6\text{H}_5 \\ \text{CW}_3\text{CH}_3 \end{array}}_{\text{CW}_3} \underbrace{\begin{array}{c} \text{C}_6\text{H}_5 \\ \text{CW}_3\text{CH}_3} \underbrace{\begin{array}{c} \text{C}_6\text{H}_5 \\ \text$$

Many of the reactions of α -silyl esters have already been discussed in the context of the stereochemical outcome of the Peterson olefination reaction. Rather than reiterate, it suffices to say that stereochemical control with this class of compounds can be either small (45, 205) or heavily biased toward the E isomer (magnesium counterion), (41) or can form the Z isomer preferentially (diphenylmethylsilyl group). (42, 43)

$$C_2H_5CH[SiCH_3(C_6H_5)_2]CO_2C_2H_5 \xrightarrow{1. LDA, THF, -78^\circ} C_6H_5CH = C(C_2H_5)CO_2C_2H_5$$
(73%) $E: Z = 20:80$

Stereoselective formation of one alkene product is observed when the initial condensation between the α -silyl ester enolate and the carbonyl group is stereochemically controlled, (206) particularly by the presence of heteroatom substituents in the ketonic moiety. (48-50, 84)

Reaction of the lithium enolate derived from methyl trimethylsilylacetate with 2-cyclopentenone results in 1,4 addition. (207)

$$(CH_3)_3SiCH_2CO_2C_2H_5$$

17

OSi($CH_3)_2C_4H_9-t$

CHCO $_2C_2H_5$

(68%) $E:Z = 14:86$

 α -Silyl esters provide a useful route for the preparation of alkenes by the Peterson olefination reaction through conversion of the ester moiety to an alcohol by way of a reduction, (62) or reaction with organometallic compounds which undergo Cram addition to the intermediate β -ketosilane. (43, 63, 208-210)

$$n-C_8H_{17}CH[SiCH_3(C_6H_5)_2]CO_2C_2H_5 \xrightarrow{1. n-C_3H_7MgBr, THF} \xrightarrow{2. CH_3Li} \xrightarrow{3. KOC_4H_9-t}$$

 $n-C_8H_{17}CH=C(CH_3)C_3H_7-n + n-C_8H_{17}CH=C(C_3H_7-n)_2$
 $(52\%) E: Z = 99:1$ (9%)

The Peterson reaction is pivotal to one approach to coumarins, where an α -silyl ester is generated in situ from trimethylsilylketene. (211)

Lactones are, of course, a subclass of esters. Lactone enolates undergo *C*-silylation in the presence of HMPA, (195) (omission of HMPA results in *O*-silylation (194)), or by use of chlorodiphenylmethylsilane as the silylating agent. (196) Another approach starts from trimethylsilylacetic acid (104). (212)

$$(CH_3)_3Si$$
 CO_2H $\xrightarrow{1.2 \text{ eq. LDA, THF, 0}^\circ}$ $\xrightarrow{2}$ $\xrightarrow{0}$ $\xrightarrow{3. \text{H,O}}$

$$(CH_3)_3Si \xrightarrow{CO_2H} \xrightarrow{p\text{-}CH_3C_4H_4SO_3H} (CH_3)_3Si \xrightarrow{O} (100\%)$$

$$OH \qquad (94\%)$$

These α -silyl lactones provide α , β -unsaturated lactones in an analogous manner to esters, (195) although use of lithium triphenylmethide as base is advocated to circumvent any problems associated with the formation of Michael byproducts from an amine and an α -ylidenelactone. (212)

The Lewis acid catalyzed condensation of α -silyl lactones with carbonyl compounds has already been illustrated (Eq. 10). (34, 47)

3.2.2.3.2. α -Silyl Acids (189)

The dianion of trimethylsilylacetic acid (104) can be used to prepare α , β -unsaturated carboxylic acids. (212)

$$(CH_2)_3SiCH_2CO_2H \xrightarrow{1. LDA (2 eq), THF, 0^{\circ}} n-C_6H_{13}CH = CHCO_2H$$

 $\frac{2. n-C_6H_{13}CHO}{3. H_2O}$ (90%) $E: Z = 3:2$

3.2.2.3.3. α -Silyl Thioesters

There are many variations on the ester theme. One example is the preparation of α , β -unsaturated thiol esters. The *E* isomer is the major product. (213)

$$(CH_3)_3SiCH_2CO_2H \xrightarrow{1. (COCl)_2} (CH_3)_3SiCH_2COSC_4H_9-t \xrightarrow{1. LDA, THF, -78^\circ} (CH_3)_3SiCH_2COSC_4H_9-t \xrightarrow{2. C_6H_5CHO} (C_6H_5CH=CHCOSC_4H_9-t) (73\%) E: Z > 98:2$$

3.2.2.3.4. \alpha -Silyl Acylsilanes

 α -Silyl acylsilanes are readily accessible from bis(trimethylsilyl)acetylene. (214) Deprotonation—alkylation—deprotonation—Peterson reaction is available

as a one-pot sequence. (44) The resultant α , β -unsaturated acylsilane is formed as one isomer, and can be converted to the corresponding carboxylic acid by oxidation.

$$(CH_{3})_{3}SiC = CSi(CH_{3})_{3} \xrightarrow{\frac{1. BH_{3} \cdot S(CH_{3})_{2}}{2. (CH_{3})_{3}NO}} (CH_{3})_{3}SiCH_{2}COSi(CH_{3})_{3}$$

$$\xrightarrow{\frac{1. LDA, THF, -78^{\circ}}{2. CH_{3}I}} i-C_{3}H_{7}CH = C(CH_{3})COSi(CH_{3})_{3}$$

$$\xrightarrow{\frac{3. LDA}{3. LDA}} (90\%)$$

$$\xrightarrow{\frac{1. NaOH, H_{2}O_{2}, H_{2}O, THF, 40^{\circ}}{2. H_{3}O^{+}}} i-C_{3}H_{7}CH = C(CH_{3})CO_{2}H$$

$$(89\%)$$

3.2.2.3.5. α -Silyl Amides

The C-silylated derivative of N,N-dimethylacetamide is prepared by deprotonation of the parent amide with lithium diisopropylamide and reaction of the enolate with chlorotrimethylsilane. (195, 215)

$$CH_3CON(CH_3)_2 \xrightarrow{\text{I. LDA, THF, } -78^{\circ}} (CH_3)_3SiCH_2CON(CH_3)_2$$
(78%)

The enolate of amide 105 is more stable than the corresponding ester analog, and reacts in high yields with ketones and nonenolizable aldehydes. (216, 217)

$$(CH_3)_3SiCH_2CON(CH_3)_2 = \frac{1. LDA. THF, 0^{\circ}}{\frac{2. C_6H_5CHO}{3. CH_3CO_2H, H_2O}} C_6H_5CH = CHCON(CH_3)_2$$
105 (85%)

The methodology provides a useful method for the synthesis of 3-alkylideneazetidin-2-ones. (218, 219)

$$\begin{array}{c}
 & 1. \text{ LDA, THF, } -78^{\circ} \\
 & 1. \text{ LDA, THF, } -78^{\circ} \\
 & 2. \text{ (CH3)3SiCl}
\end{array}$$

$$\begin{array}{c}
 & 1. \text{ LDA, THF, } -78^{\circ} \\
 & 2. \text{ C6H3COCH3}
\end{array}$$

$$\begin{array}{c}
 & 1. \text{ LDA, THF, } -78^{\circ} \\
 & 2. \text{ C6H3COCH3}
\end{array}$$

$$\begin{array}{c}
 & 1. \text{ LDA, THF, } -78^{\circ} \\
 & 2. \text{ C6H3COCH3}
\end{array}$$

$$\begin{array}{c}
 & 1. \text{ LDA, THF, } -78^{\circ} \\
 & 3. \text{ H2O}
\end{array}$$

$$\begin{array}{c}
 & (43\%) \text{ E:Z = 5:2}
\end{array}$$

Deprotonation of the unsaturated amide **106** followed by condensation with benzaldehyde results in a mixture of compounds, with the Peterson product **107** as the major component. (220, 221)

CON(C₃H₇-
$$i$$
)₂
Si(CH₃)₃

1. s-C₄H₄Li, TMEDA,
THF, -78°
2. C₄H₃CHO

(CH₃)₃Si
CHOHC₆H₅

+

CON(C₃H₇- i)₂
CHOHC₆H₅

(CH₃)₃Si
CHOHC₆H₅

(A4%)
107

3.2.2.3.6. 2-Silylmethyl-1,3-oxazines

1,3-Oxazines may be considered to be carboxylic acid analogs. Deprotonation of the 2-trimethylsilylmethyl-1,3-oxazine **108** with *n*-butyllithium and subsequent condensation with a methyl ketone provides the alkene as a mixture of isomers. (222)

$$C_6H_5$$

(>80%) major isomer E

3.2.3. Preparation of α -Silyl Carbanions Containing Nitrogen

3.2.3.1.1. α -Silyl Nitriles

In many ways, nitriles are closely related to carboxylic acid derivatives since hydrolysis of the former provides the latter in high yields. α -Silyl nitriles are available from hydrosilylation of α , β -unsaturated nitriles. (223) Deprotonation with lithium diisopropylamide and reaction with a carbonyl compound provides the homologous unsaturated nitrile. (223, 224)

$$R^{1}CH = CHCN \xrightarrow{C_{6}H_{5}(CH_{3})_{2}SiH} R^{1}CH_{2}CH[SiC_{6}H_{5}(CH_{3})_{2}]CN$$

$$\xrightarrow{1. LDA, THF, -78^{\circ}} R^{1}CH_{2}C(CN) = C(CH_{3})C_{2}H_{5}$$

$$(95\% by GLC)$$

Conjugate addition is observed with the lithio derivative of trimethylsilylacetonitrile and α , β -unsaturated carbonyl compounds. (225)

3.2.3.1.2. Silylamines

Sodium hexamethyldisilazide (109) is commonly employed as a hindered base. However, it reacts with nonenolizable aldehydes and ketones to provide the imine. (226)

$$(C_6H_5)_2CO \xrightarrow{NaN[Si(CH_3)_3]_2 (109)} (C_6H_5)_2C=NSi(CH_3)_3$$
(84%)

The reagent 109 also reacts with both carbonyl groups of benzoquinone, (226) while in a related reaction, monosilylamines condense with sulfur dioxide (Eq. 29). (227)

This protocol for the preparation of imines has not been fully exploited, but *N*-silylamines do react with carbonyl compounds when heated. (228) An additional example is provided by the preparation of the *N*-arylimine **110**. (229)

The *N*, *N*-bis(trimethylsilyl)enamine **111** reacts with carbonyl compounds in the presence of fluoride ion to furnish the imines in moderate yields. (230)

CH₃CH=CHN[Si(CH₃)₂]₂
$$\xrightarrow{i \cdot C_3H_7CHO}$$
 CH₃CH=CHN=CHC₃H₇- i
111 (50%)

3.2.3.1.3. α -Silyl Imines and Related Derivatives

 α -Silyl imines, and other derivatives such as hydrazones, (231) provide useful methodology for the preparation of α , β -unsaturated carbonyl compounds; the nitrogen-containing functional group acts as a protected carbonyl group. (232, 233) This strategy has been employed

NX

1. LDA, THF,
$$0^{\circ}$$

2. Cyclohexanone
3. (CO₂H)₂, H₂O

(90%) X = t-C₄H₉

X = t-C₄H₉ or (CH₃)₂N

(21)

in a synthesis of *N*-methylmaysenine. (234) An improvement on reagent

CH₃O
$$\frac{\text{Cl}}{\text{NHCH}_3}$$
 $\frac{\text{OMEM}}{\text{S}}$ $\frac{1. (\text{CH}_3)_3 \text{SiCLi}(\text{Ch}_3)\text{Ch} = \text{NC}_4 \text{H}_5 \cdot \text{I}}{2. \text{ H}_5 \text{O}^4}$

MEM = methoxyethoxymethyl

112, which circumvents the problem of competing *N*-silylation during its preparation, is to use the triethylsilyl analog **113**. (235)

$$(C_2H_5)_3$$
SiCH(CH₃)CH=NC₄H₉-t
113

- α , β -Unsaturated dimethylhydrazones are obtained as shown in Eq. 21 prior to hydrolysis. (236)
- 2-Alkylidenepyridine derivatives are readily available from
- 2-(trimethylsilylmethyl)pyridine (63). (96)

$$\begin{array}{c|c}
& & 1. \text{ LDA, THF, } -78^{\circ} \\
\hline
N & \text{CH}_{2}\text{Si}(\text{CH}_{3})_{3} & & & \\
\hline
63 & & & & \\
\end{array}$$
CH=CHR

The lithio derivative derived from trimethylsilyldiazomethane reacts with

carbonyl compounds to give the β -hydroxysilane 114. When 114 is warmed to room temperature, nitrogen is evolved and an epoxide is formed. (237)

$$(CH_3)_3SiCH = N_2 \xrightarrow{n \cdot C_4H_3Li, THF} (CH_3)_3SiCLi = N_2$$

$$\xrightarrow{1. (CH_3)_3CO} (CH_3)_3SiC(=N_2)COH(CH_3)_2 \xrightarrow{25^\circ} (CH_3)_3SiCH - C(CH_3)_2$$
114

Reaction of bis(trimethylsilyl)methyl isothiocyanate (115) with tetra-n-butylammonium fluoride affords the α -silyl anion, which can be trapped by benzaldehyde to give a mixture of the α , β -unsaturated isothiocyanate 116 and oxazolidine-2-thione 117; the latter product results from competing attack of the alkoxide oxygen at the isocyanate group. (238)

3.2.3.2. Preparation of α -Silyl Carbanions Containing Sulfur Thiol esters have already been discussed (p. 44).

$$(CH_{3})_{3}SiCHN = C = S \xrightarrow{\text{1. (n-C_{4}H_{3})_{4}NF, C_{4}H_{3}CHO.}} C_{6}H_{5}CH = CHN = C = S$$

$$115 \xrightarrow{\text{2. H}_{2}O} (31\%) E:Z = 56:44)$$

$$116 \xrightarrow{\text{C}_{6}H_{5}} Si(CH_{3})_{3}$$

$$+ O \qquad NH$$

$$S \xrightarrow{\text{(66\%)}}$$

$$117$$

3.2.3.2.1. α -Silyl Sulfides

 α -Silyl sulfides are readily deprotonated by *n*-butyllithium in tetrahydrofuran or tetramethylethylenediamine. Subsequent condensation of this alkyllithium derivative **118** with carbonyl compounds provides the vinyl sulfides directly. (3) The requisite anion **118** can be obtained by a variety of methods which include direct deprotonation of the parent silane (86), (3, 16, 239)

$$(CH_3)_3SiCH_2SC_6H_5 \xrightarrow{n-C_4H_9Li} (CH_3)_3SiCHLiSC_6H_5 \xrightarrow{C_6H_5CHO}$$

86

118

 $C_6H_5CH = CHSC_6H_5$

(71%) $E: Z = 1:2$

the addition of an alkyllithium to 1-phenylthio-1-trimethylsilylethene (87), (150, 153, 156, 157, 240) and reductive lithiation of bis(phenylthio)ketals 119. (153, 157, 241)

$$\begin{array}{c}
\stackrel{\text{SC}_{6}\text{H}_{5}}{=} \stackrel{\text{1. R}^{1}\text{Li, TMEDA, } (C_{2}\text{H}_{5})_{2}\text{O}}{\text{Si}(\text{CH}_{3})_{3}} \xrightarrow{\text{2. R}^{2}\text{R}^{3}\text{CO}} \stackrel{\text{SC}_{6}\text{H}_{5}}{=} R^{2}$$

$$\begin{array}{c}
\text{R}^{1}\text{C}(\text{SC}_{6}\text{H}_{5})_{2}\text{Si}(\text{CH}_{3})_{3} & \xrightarrow{\text{1. C}_{10}\text{H}_{9}\text{Li, THF, } -78^{\circ}} & \text{C}_{6}\text{H}_{5}\text{SCR}^{1} = \text{CR}^{2}\text{R}^{3}
\end{array}$$

$$\begin{array}{c}
\text{119}
\end{array}$$

Addition of the organolithium 118 to α , β -unsaturated ketones results in 1,2 addition and the formation of 1-phenylthio-1,3-butadienes. (239, 242) Reaction of the sulfide-containing carbanion 118 with amides provides a route to enamines. (243, 244)

$$C_6H_5SCHLiSi(CH_3)_3 + N C_6H_5 \xrightarrow{THF} N C_6H_5$$

(55% by NMR) $E:Z = 100:0$

3.2.3.2.2. α -Silyl Sulfoxides

1-Trimethylsilyl-1-phenylsulfinylmethyllithium (120) is available from the parent sulfoxide 121 by reaction with *n*- or *tert*-butyllithium. Condensation of the alkyllithium 120 with carbonyl compounds provides the vinyl sulfoxides. (245) However, this approach is complicated by the thermal

lability of the sulfoxide **121**, which undergoes a sila-Pummerer rearrangement to a significant degree above 0° . This problem can be circumvented to a certain extent by generation of the α -silyl sulfoxide in situ. The sequence of Eq. 23 cannot be used to react the silyl derivative **121** prepared from methyl phenyl sulfoxide since carbon–sulfur bond cleavage occurs. (245)

$$(CH_3)_2SO \xrightarrow{1. n-C_4H_9Li (2 \text{ eq}), \text{ THF}}$$

$$CH_3SOCH_2Si(CH_3)_3 \xrightarrow{1. CH_3SOCH_2Li} CH_3SOCH = C(C_6H_5)_2$$

$$(50\%)$$

A sulfoxide allows the introduction of an asymmetric center at sulfur. However, when a chiral sulfoxide is used in a sequence analogous to Eq. 23, stereoselectivity is not observed in the vinyl sulfoxide formation. (246) As with the sulfide, the sulfoxide 120 undergoes 1,2 addition to conjugated ketones. (245)

3.2.3.2.3. α -Silyl Sulfuranes

Reaction of trimethylsilylmethylenedimethylsulfurane with carbonyl compounds leads to a vinyl sulfonium product **122**. This sulfonium salt can then undergo further reaction depending upon the nature of the substituents and conditions. (247) When the sulfonium salt **123** is deprotonated by sec-butyllithium, the vinyl sulfide is isolated. (248)

$$(CH_3)_2S \xrightarrow{S} Si(CH_3)_3 \xrightarrow{1. KOC_4H_5 \cdot t_1 DMSO} CH_3 \xrightarrow{C} CH_3 C_6H_5$$

$$CH_3 \xrightarrow{C} CH_3 \xrightarrow{C} CH_5$$

$$CH_3 \xrightarrow{C} CH_5$$

3.2.3.2.4. α -Silyl Sulfones

This class of compounds is readily deprotonated because of the excellent anion-stabilizing properties of the sulfone group. (249) Vinyl sulfones are obtained in good to excellent yields. (250-253) The use of 1,2-dimethoxyethane (DME) is advocated as the solvent of choice for this reaction. (251) When an alkyl substituent is attached to the carbon atom bonded to the silicon and sulfur groups, the reaction does proceed but yields can be low, particularly with enolizable ketones. (157)

$$C_6H_5SO_2CHR^1Si(CH_3)_3 \xrightarrow{1. \text{ n-C}_4H_9Li, \text{ THF or DME, } -78^\circ} C_6H_5SO_2CR^1 = CR^2R^3$$

The intermediate β -hydroxysilane can be trapped by acylation when the condensation is performed in diethyl ether. Nucleophilic elimination from the acetate **124** to the vinyl sulfone is not, however, stereoselective. (253)

$$C_6H_5SO_2$$
 Si(CH₃)₃ $\xrightarrow{1. \text{ n-C}_4H_5Li, (C_2H_5)_2O, -78^\circ}$ $C_6H_5SO_2$ C_6H_5 C_6H_5

The tricyclic sulfone 125 provides the vinyl sulfone 126 by a Peterson protocol. Thermolysis of 126 affords a vinylallene. (254)

3.2.4. Preparation of α -Silyl Carbanions Containing Selenium

3.2.4.1.1. α -Silvl Selenides

The chemistry of α -silyl selenides has been included in reviews of organoselenium chemistry. (88, 255)

The requisite carbanion 127 is prepared either by direct deprotonation of the parent α -silyl selenide or by transmetalation of a selenide. The latter route usually provides higher yields. (256) For many examples, the β -hydroxysilane can be isolated in good yield and the diastereomers separated. Base treatment then results in just one vinyl selenide isomer. (257)

The selenium moiety can also be eliminated from the alcohol **128** by use of the appropriate reagents, such as phosphorus oxychloride in the presence of triethylamine, to yield the vinylsilane. (257)

Although the anion derived from 1,3-bis(phenylseleno)-3-trimethylsilylpropene (129) condenses with carbonyl compounds, reaction occurs at the carbon atom gamma to the silyl moiety and, thus a Peterson reaction pathway is not available. (258)

$$C_6H_5SeCH=CH[Si(CH_3)_3]SeC_6H_5$$
129

3.2.4.2. Preparation of α -Silyl Carbanions Containing Silicon (16, 88) This class of compounds requires two silyl groups on the carbon atom carrying the negative charge. As with a monosilyl carbanion, the silicon atoms do stabilize the negative charge but do not facilitate kinetic deprotonation. The

parent compound, bis(trimethylsilyl)methane (130), is deprotonated by methyllithium. (170, 259) Alternative methods must be employed for higher homologs—these

$$[(C_3)_3Si)_2CH_2 \xrightarrow{1. CH_3Li, THF, HMPA, -78^{\circ}} C_6H_5CH = CHSi(CH_3)_3$$
130 (70%) $E: Z \approx 1:1$

indirect routes parallel those used for the preparation of α -silyl carbanions.

An alkyllithium adds cleanly to 1,1-bis(trimethylsilyl)ethene, and the resultant anion reacts with carbonyl compounds to afford the vinylsilanes. (240, 259)

CH₂=C[Si(CH₃)₃]₂
$$\xrightarrow{1. n \cdot C_4H_9Li, THF, -78^{\circ}} n \cdot C_4H_9CH_2C[Si(CH_3)_3]$$
=CH₂
(73%)

A phenylthio group can be transmetalated to provide the requisite anion, (241)

$$C_6H_5SC[Si(CH_3)_3]_2C_4H_9-n \xrightarrow{1. C_{10}H_4Li, THF, -78^{\circ}} CH_3)_3Si C_6H_5$$
(62%)

while a silicon moiety can be displaced by a similar strategy. (166)

$$[(CH_3)_3Si]_3CH \xrightarrow{1. \text{LiOCH}_3, \text{HMPA}} (C_6H_5)_2C = CHSi(CH_3)_3$$
(51%)

When an allyl anion can be formed, deprotonation of a bis(silyl) compound is relatively straightforward. (173) The condensation reactions of these allyl anions can be controlled stereoselectively (Eqs. 5 and 12). (28, 81, 82)

3.2.4.3. Preparation of α -Silyl Carbanions Containing Tin (Tri-n-butylstannyl)(trimethylsilyl)methane is deprotonated by potassium diisopropylamide (KDA), albeit in low yield (ca. 50%). Subsequent condensation of the potassium carbanion with a nonenolizable aldehyde or

ketone yields the vinylstannane by way of silicon elimination. Extrusion of the stannyl group is not observed as a competing elimination pathway. (260)

$$(CH_3)_3SiCH_2Sn(C_4H_9-n)_3 \xrightarrow{1. \text{ KDA. THF.} -78^\circ} C_6H_5CH = CHSn(C_4H_9-n)_3$$
(63%)

3.2.4.4. Preparation of α -Silyl Carbanions Containing Phosphorus Reaction of the ylide derived from (trimethylsilylmethyl)triphenylphosphonium bromide (261) with benzophenone leads to tetraphenylallene. (262) This reaction illustrates that the silyl moiety is eliminated more rapidly than the phosphorus group.

The analogous reaction with α , β -unsaturated carbonyl compounds leads to the alkyl-1,3-dienylphosphonium salt. (263)

$$(C_{6}H_{5})_{3}P^{+} Si(CH_{3})_{3} \xrightarrow{1. C_{8}H_{3}Li} C_{6}H_{5} C_{6}H_{$$

Other vinylphosphorus compounds, such as vinylphosphonates, (239, 264) vinylphosphines, (3) and vinylphosphine sulfides, (3) are also available by the Peterson olefination reaction.

$$(C_2H_5O)_2POCH_2Si(CH_3)_3 \xrightarrow{1. n-C_4H_9Li, THF} (C_2H_5O)_2POCH = C(CH_3)_2$$
(55%)

The use of a β -phosphine oxide to stabilize an α -silyl carbanion provides a route to allylphosphine oxides (Eq. 13). (98)

Although most α -silyl carbanions react with a wide variety of electrophiles in a manner analogous to carbonyl compounds,

(trimethylsilylmethylene)-dimethylphenylphosphorane (131) condenses with isocyanates, isothiocyanates, and carbon disulfide to yield products resulting from insertions into the carbon–silicon bond through irreversible migrations of the silyl group. (265)

$$C_6H_5(CH_3)_2P$$
=CHSi(CH₃)₃
131

The phosphide **132** condenses with the phosphaketene **133** to afford the phosphaallene **134**. (266)

$$t - C_4 H_9 - t$$

$$C_4 H_9 - t$$

$$C_5 H_9 - t$$

$$C_7 H_9 - t$$

$$C_8 H_9 -$$

3.2.4.5. Preparation of α -Silyl Carbanions Containing Halogens Deprotonation of chloromethyltrimethylsilane or α -chloroethyltrimethylsilane (267) with sec-butyllithium provides the α -halo carbanion. Condensation of this anion with an aldehyde or ketone provides the chlorohydrin, which upon treatment with sodium hydride yields the α , β -epoxysilane. (268, 269) Thus,

the chlorine is eliminated in preference to attack of the alkoxide at silicon.

The approach has been used in a short synthesis of (R)-(+)-frontalin. (270)

In an analogous manner, condensation of the carbanion derived from triphenylsilylmethylene iodide provides the epoxide through preferential displacement of the iodide; (271) the *threo*-diastereomer of the β -alkoxysilane 135 is formed as the major isomer. (272)

$$(C_{6}H_{5})_{3}Si \xrightarrow{I} \xrightarrow{C_{4}H_{5}Li, (C_{2}H_{3})_{2}O} (C_{6}H_{5})_{3}Si \xrightarrow{Li} Li$$

$$C_{4}H_{5}CHO \xrightarrow{-70^{\circ}} H \xrightarrow{C_{6}H_{5}} CGH_{5}$$

$$OH \xrightarrow{C_{4}H_{5}CHO} H \xrightarrow{C_{6}H_{5}} CGH_{5}$$

$$OH \xrightarrow{C_{4}H_{9}Li} (85\%)$$

$$CH_{5}OH \xrightarrow{C_{6}H_{5}} GGH_{5}$$

$$CH_{5}OH \xrightarrow{C_{6}H_{5}} GGH_{5}$$

$$CH_{5}OH \xrightarrow{C_{6}H_{5}} GGH_{5}$$

$$CH_{5}OH \xrightarrow{C_{6}H_{5}} GGH_{5}$$

$$CGH_{5}OH \xrightarrow{C_{6}H_{5}} GGH_{5}$$

A closely related reaction is observed when the acyl silane **136** is treated with fluoride ion to yield benzil. Fluoride is eliminated preferentially to the trimethylsiloxy group. This reaction also involves the migration of a silyl group from carbon to oxygen. (273)

$$C_{6}H_{5} \xrightarrow{C} Si(CH_{3})_{3} \xrightarrow{KF} C_{6}H_{5} \xrightarrow{C} Si(CH_{3})_{3} \xrightarrow{O-Si(CH_{3})_{3}} C_{6}H_{5} \xrightarrow{C} \xrightarrow{F} Si(CH_{3})_{3} \xrightarrow{O-Si(CH_{3})_{3}} O-Si(CH_{3})_{3}$$

$$\xrightarrow{136} C_{6}H_{5} \xrightarrow{C} \xrightarrow{C} Si(CH_{3})_{3} \xrightarrow{O-Si(CH_{3})_{3}} \xrightarrow{O-Si(CH_{3})_{3}} \xrightarrow{O-Si(CH_{3})_{3}} \xrightarrow{O-Si(CH_{3})_{3}} \xrightarrow{O-Si(CH_{3})_{3}} \xrightarrow{O-Si(CH_{3})_{3}} \xrightarrow{O-Si(CH_{3})_{3}} \xrightarrow{O-Si(CH_{3})_{3}} \xrightarrow{O-Si(CH_{3})_{3}} \xrightarrow{C_{6}H_{5}} \xrightarrow{C_{6$$

Reaction of the allyl anion, prepared by a transmetalation from the lead compound 137, with carbonyl compounds leads to a mixture of products, including those arising from a Peterson olefination pathway. (274)

Treatment of dibromo(trimethylsilyl)methane and cyclohexanone with magnesium amalgam results in formation of the vinylsilane. However, the procedure is not general, and the exact mechanism is open to question. (275)

$$(CH_3)_3SiCHBr_2 + O \xrightarrow{Mg-Hg} CHSi(CH_3)_3$$

$$(CH_3)_3SiCHBr_2 + O \xrightarrow{Mg-Hg} (C_2H_3)_3O$$

$$(40\%)$$

3.2.4.6. Preparation of α -Silyl Carbanions Containing Oxygen Methoxymethyltrimethylsilane is deprotonated by sec-butyllithium to give, upon condensation with a carbonyl compound, the β -hydroxysilane 138; elimination is effected by potassium hydride. (276, 277) This methodology has been employed in a synthesis

$$(CH_3)_3Si$$
 OCH_3 $\xrightarrow{1. s \cdot C_4H_3Li, THF, -70^\circ}$ OCH_3 OCH_3

of warburganal, when other nucleophiles, including Wittig reagents, failed to react with the enone **139**. (278)

In contrast, benzylsilanes 140 undergo an anion–radical induced desilylation in polar solvents to yield the β -alkoxyalcohol; (279) the Peterson reaction is still observed in less polar solvents.

OCH₃

$$C_6H_5$$

Si(CH₃)₃

140

 C_6H_5
 C_6H_5
 C_6H_5
 C_6H_5
 C_6H_5

OCH₃
 C_6H_5

OCH₃
 C_6H_5
 C_6H_5
 C_6H_5

OCH₃
 C_6H_5

OCH₃
 C_6H_5

OCH₃
 C_6H_5
 C_6H_5

OH

(92%) erythro:threo = 1:1

3.2.4.7. Preparation of α -Silyl Carbanions Containing Boron Treatment of pinacol trimethylsilylmethaneboronate (141) with lithium 2,2,6,6-tetramethylpiperidine (LTMP) followed by a carbonyl compound gives the alkeneboronic ester. (280) The reaction cannot be applied to higher homologs of 141 because the lithiation procedure fails. (281)

$$(CH_3)_3SiCH_2B$$

$$0$$

$$1. LiTMP, THF, TMEDA, 0°$$

$$2. n-C_6H_{13}CH = CHB$$

$$0$$

$$141$$

$$(73\%) E:Z = 1:2$$

The procedure has been modified to allow the preparation of dienes; (282) no base is required for the condensation step with the carbonyl compound.

Reaction of benzaldehyde with the carbanion derived from (dimethylborylmethyl)trimethylsilane gives phenylacetaldehyde upon oxidative workup. (283) Presumably, the silicon is eliminated in a Peterson-type process. With benzophenone as the carbonyl compound, a mixture of 2,2-diphenylacetaldehyde (45%) and 2,2-diphenyl-1-trimethylsilylethene (55%) is obtained. The crowded transition state promotes competitive elimination of boron. (283)

$$Mes_2BCH_2Si(CH_3)_3 \xrightarrow{1. MesLi} C_6H_5CH_2CHO$$

$$3. H_2O_2. NaOH (95\%)$$

$$Mes = mesityl$$

3.2.4.8. Other Transformations Closely Related to the Peterson Olefination Reaction

Reactions closely related to the Peterson olefination, including the use of electrophiles containing carbonyl groups, are discussed elsewhere in this chapter.

Other transformations that could involve a Peterson-type mechanism are the deoxygenation of ketones by zinc and chlorotrimethylsilane, (284) and the deoxygenation of epoxides by magnesium and the same chlorosilane. (285) The exact mechanisms of these reactions have not been rigorously established.

$$O_{2}CCH_{3}$$

$$Z_{n_{s}}(CH_{s})_{3}SiCI$$

$$O_{2}CCH_{3}$$

$$O_{2}CCH_{3}$$

$$O_{2}CCH_{3}$$

$$O_{3}CCCH_{3}$$

3.2.4.9. Preparation of α -Silyl Carbanions Containing Two or More Functional Groups

In many respects, these classes of compounds just combine two or more of the functional groups described above onto the same carbon atom together with a silyl group. Most of the reactions of these compounds mirror those of the monosubstituted series, although in some cases the sheer size of the carbanion promotes reaction of this species as a base rather than a nucleophile.

The examples cited in this section are subdivided by the nature of the substituents and listed in the same order as used for the monosubstituted α -silyl carbanions. When one of the functional groups is carbon–carbon unsaturation so that an allyl (or propargyl) anion results from the deprotonation procedure, the chemistry of this system is discussed in the appropriate monosubstituted section provided that condensation with a carbonyl compound results directly in a Peterson-type elimination.

3.2.4.9.1. α -Silyl Carbanions Containing an Ester and Silyl Groups The enolate anion derived from *tert*-butyl bis(trimethylsilyl)acetate (**24**) reacts with aldehydes to give the α -silyl- α , β -unsaturated esters in good yields.

Condensation occurs in a 1,2 manner with conjugated enals but fails with enones. (286)

$$[(CH_3)_3Si]_2CHCO_2C_4H_9-t \xrightarrow{1. LDA, THF, -78^{\circ}}$$
24
$$i-C_3H_7CH=C[Si(CH_3)_3]CO_2C_4H_9-t$$
(74%)

The use of various cations as the enolate counterion can be used to control the stereochemical outcome of the reaction (Eq. 9). (46)

3.2.4.9.2. α -Silyl Carbanions Containing an Ester and Tin Groups Reaction of the lithium or potassium enolate derived from *tert*-butyl (trimethylsilyl)tri-n-butylstannylacetate with carbonyl compounds provides a useful method for the preparation of α -stannyl- α , β -unsaturated esters. (260, 287)

$$(CH_3)_3Si \longrightarrow CO_2C_4H_9-t \xrightarrow{1. LDA, THF, HMPA, -23^{\circ}} C_6H_5 \longrightarrow Sn(C_4H_9-n)_{OFKDA, THF, -78^{\circ}} CO_2C_4H_9-t$$

$$(n-C_4H_9)_3Sn \longrightarrow CO_2C_4H_9-t \longrightarrow CO_2C_$$

3.2.4.9.3. α -Silyl Carbanions Containing an Ester and Halogen Groups *tert*-Butyl chloroacetate is deprotonated by lithium diisopropylamide, and subsequent silylation results in formation of the adduct **142**.

The ester 142 is deprotonated and condensed with a carbonyl compound by the standard procedures. Workup is optimized by use of thionyl chloride, which suppresses isolation of the β -hydroxysilane rather than the α -halo ester 143.

(288) *tert*-Butyl bromo(trimethylsilyl)acetate provides α -bromo- α , β -unsaturated esters in an analogous manner. (289)

3.2.4.9.4. α -Silyl Carbanions Containing a 1,3-Oxazine and Silyl Groups In a manner completely analogous to Eq. 20, the vinylsilanes 144 are prepared from the bis(silyl) compound 145. In all cases the *E* isomer is the major product. (222)

Si(CH₃)₃
$$\xrightarrow{1. n-C_4H_3Li, THF, -78^\circ}$$
 C_3H_7-i
Si(CH₃)₃ $(CH_3)_3$ $(CH_3)_3$ Si (E) -144

3.2.4.9.5. α -Silyl Carbanions Containing Two Nitrogen Groups The α -amino nitrile **146** can be silylated and subsequentially condensed with a carbonyl compound in a one-pot reaction. (290, 291)

NCCH₂N(CH₃)C₆H₅
$$\xrightarrow{1. \text{LDA. THF, C}_6\text{H}_{14}}$$
 CH₂=C(CN)N(CH₃)C₆H₅
146 $\xrightarrow{3. \text{LDA}}$ (83%)

3.2.4.9.6. α -Silyl Carbanions Containing Nitrogen and Sulfur Groups 1-(Arylthio)alkenyl isocyanides are available from arylthiomethyl isocyanides 147. The silylation and condensation steps can be performed in a single flask. (292)

In a similar manner, 1-isocyano-1-toluenesulfonylalkenes are obtained from the sulfone 148. (293)

ArSCH₂NC
$$\xrightarrow{1. n-C_4H_9Li, THF}$$
 ArSCH[Si(CH₃)₃]NC $\xrightarrow{1. n-C_4H_9Li, THF}$ $\xrightarrow{-80^{\circ}}$ 2. (CH₃)₃SiCl $\xrightarrow{2. (CH_3)_3SiCl}$ ArSCH[Si(CH₃)₃]NC $\xrightarrow{1. n-C_4H_9Li, THF}$ $\xrightarrow{-80^{\circ}}$ 2. R¹CH=C(SAr)NC Si(CH₃)₃ \xrightarrow{p} \xrightarrow{p}

3.2.4.9.7. α -Silyl Carbanions Containing Nitrogen and Silyl Groups The protocol just described has been adapted for the reaction of tris(trimethylsilyl)methyl isocyanate with benzaldehyde in the presence of fluoride ion to give α -trimethylsilylstyryl isothiocyanate (26%) and 4-benzyl-5-phenyl-4-oxazoline-2-thione (7%) (cf. Eq. 22). (238)

3.2.4.9.8. α -Silyl Carbanions Containing Sulfur and Unsaturation The allyl anion obtained from 1-phenylthio-1-trimethylsilyl-2-propene (**149**) condenses with carbonyl compounds at the gamma carbon atom. (294, 295) The adduct **150**, however, undergoes a second condensation reaction at the alpha position to provide the 2-thio-1,3-butadiene derivative. (296, 297)

The 4*H*-thiopyran **151** provides a useful starting material for the preparation of \triangle ⁴-4*H*-thiopyrans. (298) The conjugation may be increased further by use of the vinylsilanes **152** (Eq. 18). (178)

$$C_{6}H_{5} \xrightarrow{S} C_{6}H_{5}$$

$$C_{6}H_{5} \xrightarrow{I. KOC_{4}H_{5}\cdot I. R-C_{4}H_{2}Li} C_{6}H_{5}$$

$$C_{6}H_{5} \xrightarrow{I. KOC_{4}H_{5}\cdot I. R-C_{4}H_{2}Li} C_{6}H_{5}$$

$$C_{6}H_{5} \xrightarrow{C_{4}H_{5}} C_{6}H_{5}$$

$$C_{6}H_{5} \xrightarrow{X} C_{6}H_{5}$$

$$X = O \text{ or } S$$

$$152$$

3.2.4.9.9. α -Silyl Carbanions Containing Two Sulfur Groups This is the largest class of compounds in this category since the product ketene thioacetals can be used as the starting materials for a wide range of synthetic transformations. (299, 300)

The two sulfur atoms are often part of a 1,3-dithiane system because the required 2-silyl derivative **153** is readily available. (301, 302) Deprotonation of the silane **153** with *n*-butyllithium followed by reaction with a carbonyl compound provides the ketene thioacetals **154** in good yields. (303-309) 1,2 Addition is observed between the organolithium derived from the 1,3-dithiane **153** and

$$S \downarrow S Si(CH3)3 \xrightarrow{1. n-C_4H_4Li, THF_1-23^\circ} S \downarrow S S 153
$$R^1 \qquad R^2$$$$

 α , β -unsaturated ketones. (305) The general application of this methodology can be illustrated by the preparation of the ketene thioacetal **155** and its use in a cyclization procedure. (310)

The preference for 1,2 addition can be put to good use for the preparation of substituted 1,3-butadienes. (311) A further example of the methodology is available as part of a synthesis of 17-oxoelliptiane. (312)

Other sulfur groups, such as phenylthio, can be used to give the homologous ketene thioacetals, (240, 308, 313, 314) and in certain cases, the carbanion is available by a displacement reaction rather than deprotonation. (241) When the sulfur atoms are not part of a cyclic system, 1,4 addition is usually observed with conjugated ketones; the regioselectivity is, however, dependent upon the exact nature of the carbanion, enone, and reaction conditions. (242, 315, 316)

Formamides derived from secondary amines react with bisthio(trimethylsilyl)methyllithiums to furnish the enamines **156**. (308)

CH₃

$$\begin{array}{c}
CH_3 \\
\hline
N
\end{array}$$

$$\begin{array}{c}
1. \text{ Li} \\
2. \text{ CH}_3\text{ Li} \\
3. \text{ NaBH}_4
\end{array}$$

$$\begin{array}{c}
AgNO_3 \\
H
\end{array}$$

$$\begin{array}{c}
CH_3 \\
K
\end{array}$$

$$\begin{array}{c}
K$$

$$X$$

3.2.4.9.10. α-Silyl Carbanions Containing Sulfur and Silicon Groups 1-Thio-1-silylalkenes are readily available by the Peterson protocol. (313) The requisite anion 157 is also available by a sulfur displacement reaction. (241)

$$\begin{array}{c|c} C_6H_5S \\ \hline (CH_3)_3Si \end{array} \longrightarrow \begin{array}{c} Si(CH_3)_3 & \xrightarrow{1. \ n\cdot C_4H_3Li, \ THF, \ -78^\circ} \\ \hline (CH_3)_3Si \end{array} \longrightarrow \begin{array}{c} C_6H_5S \\ \hline (CH_3)_3Si \end{array} \longrightarrow \begin{array}{c} R \\ \hline \end{array}$$

Bis(trimethylsilyl)phenylthiomethyllithium (157) can be used as a carboxylate anion equivalent by the strategy illustrated in Eq. 25, which outlines a synthesis of the Prelog–Djerassi lactone (158). Conversion of selenide 159 to the acid is achieved by a selenium analog of the sila-Pummerer rearrangement. (317, 318)

3.2.4.9.11. α -Silyl Carbanions Containing Sulfur and Tin Groups Vinylstannanes are formed in the expected manner with the silyl group being eliminated exclusively. (260, 313)

$$(CH_3)_3Sn$$
 $Si(CH_3)_3$ $\xrightarrow{1. LDA, THF, HMPA, -78^\circ}$ R^1 $Sn(CH_3)_3$ SC_6H_5

3.2.4.9.12. α -Silyl Carbanions Containing Sulfur and Oxygen Groups 2-Trimethylsilyl-1,3-oxathiane (160) (319) is deprotonated by sec-butyllithium. When the resultant anion is reacted with benzaldehyde, the β -hydroxysilane results. When benzophenone or cyclohexanone is employed as the carbonyl compound and the reaction mixture is allowed to warm to ambient temperature, thiol esters 161 are formed presumably by way of the ketene acetal 162. (320)

Methoxyphenylthiomethane provides the analogous acyclic ketene acetals in good yields. (321) As with the cyclic thioacetal **160**, 1,2 addition is the major reaction pathway with conjugated carbonyl compounds. The sulfone **163** provides the substituted vinyl sulfones as expected. (322)

$$p\text{-CIC}_6\text{H}_4\text{SO}_2\text{CH}(\text{OCH}_3)\text{Si}(\text{CH}_3)_3 \xrightarrow{\text{1. } n\text{-C}_4\text{H}_9\text{Li. THF.} -75^\circ} \ \text{2. } \text{CH}_3\text{CHO}$$

$$p\text{-CIC}_6\text{H}_4\text{SO}_2\text{C}(\text{OCH}_3) = \text{CHCH}_3$$

$$(99\%) E: Z = 83:16$$

3.2.4.9.13. α -Silyl Carbanions Containing Two Selenium Groups Ketene selenoacetals are available from a bis(selenosilyl) carbanion. (255, 313)

$$(C_6H_5Se)_2CHSi(CH_3)_3 \xrightarrow{1. LDA, THF, -78^\circ} (C_6H_5Se)_2C=CHR$$

3.2.4.9.14. α -Silyl Carbanions Containing Two Silicon Groups Again, one of the major problems is the preparation of the required carbanion, although direct deprotonation of tris(trimethylsilyl)methane is possible using methyllithium as base. (313, 323-325) Condensation with carbonyl compounds is, however, limited to nonenolizable aldehydes and ketones.

$$[(CH_3)_3Si]_3CH \xrightarrow{CH_3Li, THF} [(CH_3)_3Si]_3CLi \xrightarrow{(C_6H_5)_2CO} [(CH_3)_3Si]_2C = C(C_6H_5)_2$$

$$164 \qquad (25\%)$$

Alternative procedures for the preparation of the carbanion **164** employ addition of an alkyllithium to 1,1-bis(trimethylsilyl)ethene, (240) reductive lithiation of a phenylthio group by lithium naphthalenide (241) or tri-*n*-butylstannyllithium, (164) and cleavage of a silyl group by an alkoxide in a polar solvent. (166)

3.2.4.9.15. α -Silyl Carbanions Containing Silicon and Halogen Groups Bis(trimethylsilyl)bromomethyllithium (165) reacts with aldehydes to give a mixture of the E and Z isomers of the 1-bromo-1-trimethylsilylalkene. Reaction of the anion 165 with enolizable ketones leads to proton abstraction from

$$[(CH_{3})_{3}Si]_{2}CBr_{2} \xrightarrow{\text{n-$C_{4}H_{4i}$, THF} \atop C_{4}H_{4i}$, -115°}} [(CH_{3})_{3}Si]_{2}CLiBr$$

$$\xrightarrow{\text{165} \atop (CH_{3})_{3}Si} + (CH_{3})_{3}Si \xrightarrow{\text{$C_{6}H_{5}$}} C_{6}H_{5}$$

$$\xrightarrow{\text{(51%)}} (17\%)$$

the carbonyl compound. Treatment of the carbanion **165** with benzophenone leads to the epoxide **166** through elimination of the halogen rather than a silyl moiety. This outcome may be attributed to the most stable conformer

of the intermediate β -hydroxysilane having the oxygen and bromine atoms *anti* to minimize steric interactions between the large phenyl and silyl groups. (326)

3.3. Preparation of Carbonyl Compounds

Although the conversion of vinylsilanes and α , β -epoxysilanes into carbonyl compounds is not strictly a Peterson olefination reaction, many of the observations result from the chemistry that has been discussed elsewhere in this chapter.

Overall, the transformation of an α , β -epoxysilane involves opening to the diol which then eliminates to give an enol. This enol then tautomerizes to the carbonyl compound. The stereochemical consequences of the elimination step are of little importance since the double bond is lost in the tautomerization step.

3.3.1.1. Vinylsilanes

All reviews on organosilicon chemistry invariably include a discussion of the methods available for the preparation of this class of compounds. There have also been reviews which have concentrated on the synthesis and reactions of vinylsilanes. (16, 327)

The principal method for conversion of vinylsilanes to ketones is oxidation of the carbon–carbon double bond to an α , β -epoxysilane, which is then hydrolyzed under acidic conditions (Eq. 26). (328) This approach has been used in a variety of applications including an annelation procedure (329) and an acyl anion equivalent. (132, 330)

An example of the use of this protocol is provided by part of the sequence used for the synthesis of the sesquiterpene gymnomitrol (167). (331)

The use of vinylsilanes as carbonyl precursors may increase as the oxidative cleavage of the carbon–silicon bond is exploited. (39)

3.3.1.2. α , β -Epoxysilanes

In addition to the oxidation of vinylsilanes, these compounds are available by a number of other routes, (7) including one based on an α -silyl carbanion (Eq. 24). (268)

 α , β -Epoxysilanes are isomerized to the trimethylsilyl enol ethers by treatment with a Lewis acid (332) such as magnesium bromide (66) or by heat. (65, 69, 333) Rearrangements of the substituents can also occur during these isomerizations, and a mixture of products results. (334, 335)

Many reactions of α , β -epoxysilanes have already been discussed. In addition, these epoxides react with amines to afford enamines which are masked carbonyl compounds. (336)

- α , β -Epoxysilanes react with other nucleophiles at the alpha position. (328) The stereochemical requirements for the elimination of the silyl group from the resultant β -hydroxysilane are still rigorous.
- 1,2-Epoxy-1-trimethylsilylcyclohexane (168) gives addition products with a wide variety of nucleophiles,

but as the product β -hydroxysilane is *cis*, the *anti* configuration necessary for elimination cannot be achieved. (29, 30, 337)

$$O \xrightarrow{\text{Si}(\text{CH}_3)_3} \xrightarrow{\text{H}_3\text{O}^*} OH \\ OH \\ OH \\ OH$$

The mechanism outlined in Eq. 27 has gained wide acceptance since it is analogous to the acid-catalyzed pathway for a Peterson-type elimination.

However, this mechanism may not be correct. Treatment of diol **169** with trifluoroacetic acid gives rise to aldehyde **170** as detected by NMR. Protiodesilylation is achieved by a protic acid. Thus, the reaction pathway may be similar to the pinacol rearrangement and involve a 1,2-silicon migration. (338)

$$\begin{array}{c|c}
HO & OH \\
H & & \\
-H & & \\
-H$$

Treatment of a dihydroxysilane with base results in elimination through both α - and β -oxidosilanes unless the base is sodium hydride in diethyl ether. In this case, the reaction is highly stereospecific and *anti* elimination is observed. (53)

An α , β -epoxysilane can be opened in an intramolecular manner within the appropriate system.

$$n-C_5H_{11}$$
 OH $n-C_5H_{11}$ OH $n-C_5H_{11}$ OH $n-C_5H_{11}$ OH $n-C_5H_{11}$ O (70%)

In medium-sized rings, transannular interactions can play a significant role, particularly if aprotic conditions are employed.

1,2-Epoxy-1-trimethylsilylcyclooctane (171) gives three products when treated with sulfuric acid, but the bicyclo[3.3.0]octane derivative 172 is formed exclusively with boron trifluoride. (31)

A method derived from the hydrolysis of α , β -epoxysilanes provides a route to O-methyllactols. (174)

OH
$$Si(CH_3)_3$$
 CH_2Cl_2 OCH_3 O

The presence of an α -silyl group allows an allyl alcohol to be epoxidized stereoselectively, (340) but subsequent treatment with a Lewis acid can

provide a mixture of products, depending upon the exact nature of the system. (341, 342)

3.4. Related Reactions

3.4.1.1. Other Electrophiles

In addition to carbonyl compounds, other electrophiles condense with α -silyl carbanions and result in the formation of a double bond through elimination of the elements of a silanoxide.

3.4.1.1.1. Sulfur Dioxide (342)

Sulfur dioxide serves as a good electrophile for α -silyl carbanions, and elimination occurs spontaneously to provide an excellent method for the preparation of sulfines. The α -silyl carbanions are, of course, available by the usual methods, such as direct deprotonation of a silane (343, 344) or addition of an alkyllithium to a vinylsilane. (128)

$$= \left\langle \begin{array}{c} \text{Si(CH}_{3})_{3} & \xrightarrow{\text{1. } n\text{-C}_{4}H_{9}\text{Li, TMEDA}} \\ \text{C}_{6}\text{H}_{5} & \xrightarrow{\text{2. SO}_{2}} \end{array} \right| \left[\begin{array}{c} \text{Si(CH}_{3})_{3} \\ \text{N} \\ \text{O} \\ \text{C}_{6}\text{H}_{5} \end{array} \right] \xrightarrow{\text{N-C}_{4}H_{9}} \left(\begin{array}{c} \text{Si(CH}_{3})_{3} \\ \text{N} \\ \text{O} \\ \text{C}_{6}\text{H}_{5} \end{array} \right] \xrightarrow{\text{N-C}_{4}H_{9}} \left(\begin{array}{c} \text{C}_{6}\text{H}_{5} \\ \text{C}_{6}\text{H}_{5} \end{array} \right)$$

$$(28)$$

This method is useful for the preparation of chiral sulfines; the silane 173 need not be isolated. (345)

$$C_{6}H_{5} = S = C_{2}H_{5} \xrightarrow{1. n \cdot C_{4}H_{4}Li, THF, -78^{\circ}} C_{6}H_{5} = S = C C CH_{3}$$

$$p \cdot CH_{3}C_{6}H_{4} = C_{6}H_{5} = S = C CH_{3}$$

$$0 \quad S = C C CH_{3}$$

$$p \cdot CH_{3}C_{6}H_{4} = C_{6}H_{5} = S = C CH_{3}$$

$$0 \quad S = C CH_{3}$$

$$0 \quad C_{6}H_{5} = S = C CH_{3}$$

$$0 \quad CH_{3} = C CH_{3}C_{6}H_{4}$$

The use of *N*-silylamines allows the preparation of *N*-sulfinylamines, although excess sulfur dioxide is required to minimize diimine formation. (227)

$$\begin{array}{c|c}
NH_2 & & \\
\hline
 & 1. & n-C_4H_4Li, & THF, & -78^\circ \\
\hline
 & 2. & (CH_3)_3SiCl \\
3. & n-C_4H_4Li, & THF, & 0^\circ \\
4. & SO_2
\end{array}$$
(29)

3.4.1.1.2. Nitrogen-based Electrophiles

 α -Silyl carbanions condense with imines to yield alkenes. (346) The best results are obtained with imines derived from aryl aldehydes, and stereoselectivity is excellent.

Si(CH₃)₃
$$\frac{1. \text{LDA, THF, } -75^{\circ}}{2. \text{C}_{6}\text{H}_{2}\text{CI}} \stackrel{\text{NC}_{6}\text{H}_{5}}{\text{N}}$$

$$\frac{1. \text{LDA, THF, } -75^{\circ}}{3. \text{NH}_{4}\text{CI, H}_{2}\text{O}} \stackrel{\text{H}}{\text{N}} C_{6}\text{H}_{5}$$
(84%) $E: Z = 100: 0$

With an oxime ether as electrophile, a mixture of aziridine and enamine is produced. (347)

The hydrazone 175 also gives the alkene 174, but forcing conditions are required to achieve this reaction. The condensation fails if the monosubstituted

amine is used rather than the N-methyl compound. In the presence of [2.2.1]-cryptand, an agent that forms a complex with lithium, the reaction proceeds at low temperature, albeit in low yield, to give the Z product. As the E isomer is the product formed without these constraints, the reasons for the high stereochemical control are not clear. One explanation is that the Z isomer is the kinetic product while the E isomer is thermodynamically favored. (348)

The analogous reaction with α -aryl-N-phenylnitrones gives a mixture of the E alkene 174, azobenzene, and azoxybenzene. (349) If a cyclic nitrone is

Si(CH₃)₃
$$\xrightarrow{1. \text{LDA, THF, } -78^{\circ}}$$
 N $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $C_{6}H_{5}$ $N=N$ $C_{6}H_$

used as the electrophile, then aziridines and hydroxylamine derivatives can also be formed. (349, 350)

When benzonitrile is the electrophile, an enamine results whose geometry is dependent upon the reaction conditions. (351, 352)

Si(CH₃)₃
$$\xrightarrow{1. \text{LDA, THF, } -78^{\circ}}$$

$$C_6H_5 \text{ NHSi(CH3)}_3 \text{ (CH3)}_3 \text{SiHN} C_6H_5$$

$$10:90$$

Condensation of 2-lithio-2-trimethylsilyl-1,3-oxathiane (176) with benzonitrile results in a silicon transfer from carbon to nitrogen to yield an enamine anion which affords the carbonyl compound on aqueous acid workup. (320, 353) This methodology has been extended for the preparation of 1,3-dithiane aminoketene

thioacetals (354) and isothiazole derivatives. (355) The silicon is not necessary for these reactions to proceed.

In addition to carbon electrophiles, *N*-silyl reagents undergo a Peterson olefination reaction with nitriles to afford silylimines. (355)

$$NHSi(CH_3)_3C_4H_9^{-t}$$

$$\xrightarrow{1. n\cdot C_4H_4Li, THF}$$

$$2. p\cdot CiC_4H_4CN$$

$$N-S$$

$$NHSi(CH_3)_2C_4H_9^{-t}$$

$$(64\%)$$

N-Silyl anions react with sulfinylamines to yield thiodiimide. (356) The reaction analogous to Eq. 30 with an isocyanate gives the carbodiimide (56%). (356)

$$[(CH_3)_3Si]_2NH \xrightarrow{1. n\cdot C_4H_9Li, THF, -78^{\circ}} t\cdot C_4H_9N = S = N - Si(CH_3)_3$$
(30)

Reaction of a trimethylsilyl anion with nitrous oxide in the gas phase involves nucleophilic attack at the terminal nitrogen atom; this adduct then collapses by a Peterson-type reaction. (357)

$$[(CH_3)_3Si]_2 \xrightarrow[gas\ phase]{NH_1^-} (CH_3)_3Si \xrightarrow{N_2O} (CH_3)_3Si \\ N=N \xrightarrow{O^-} (CH_3)_3SiO^- + N_2$$

3.4.1.1.3. Cyclopropylium Ions

This class of compounds provides a useful method for the synthesis of substituted triafulvenes. (358)

$$C_{6}H_{5}$$

$$C_{7}H_{7}$$

$$C_{$$

3.4.1.1.4. Deoxygenation of Pyridine N-Oxide

The deoxygenation of pyridine *N*-oxide by trimethylsilyllithium, generated in situ from hexamethyldisilane, could involve a Peterson-type elimination. (359)

3.4.1.2. The Homo-Peterson Reaction

The Peterson olefination reaction necessitates interactions between oxygen and silicon atoms situated on adjacent carbon atoms. Reactions also occur when the two heteroatoms are separated by three carbon or another element's atoms, but the intermediate carbanion must be stabilized. Reaction of tris(trimethylsilyl)methyllithium with styrene oxide gives cyclopropane 177 in good yield. (163, 325, 360) The spacer between the oxygen and silicon atoms can be even larger. (361)

$$[(CH_3)_3Si]_3CLi \xrightarrow{C_4H_4CH - C_6H_5} \xrightarrow{THF, 0^o} OSi(CH_3)_3Si \xrightarrow{CH - C_6H_5} CH_2 \xrightarrow{C_4H_4CH - C_6H_5} CH_2 \xrightarrow{C_4H_4CH - C_6H_5} CH_2 \xrightarrow{C_4H_4CH - C_6H_5} CH_2 \xrightarrow{C_4H_4CH - C_6H_5} CH_3)_3Si \xrightarrow{C_6H_5} CGH_5 CGH_5 CGH_$$

The overall philosophy is related to an approach to o-quinodimethanes, but as the reaction involves nucleophilic attack at a silyl group by an external nucleophile and loss of a remote leaving group, it is not a descendant of the homo-Peterson reaction. (361-364) This is also true for the conversion of γ -hydroxysilanes to alkenes by Lewis acids, which no doubt proceeds by way of an allylsilane and protiodesilylation. (365)

Many reactions can be related to a homo-Peterson reaction by virtue of a

OH
$$Si(CH_3)_3$$

$$BF_3 \cdot CH_3CO_2H$$

$$CH_2CI_2$$

$$(100\%)$$

1,3 transfer of a silyl group, (366) such as for the reaction of an *O*-silylketene acetal with a carbonyl compound, (13, 367) and sigmatropic rearrangements. (368) The relationship stops at this stage because subsequent elimination would be thermodynamically unfavorable; (368) the anions formed in such a rearrangement

$$(CH_3O)_2P \xrightarrow{(CH_3O)_2P} CH_3O)_2P \xrightarrow{(CH_3O)_3Si} O$$

can, however, be used in further reactions (369) or provide an elegant method

$$(CH_3)_3Si \cap CN \xrightarrow{1. LDA, DME, -78^\circ} O \cap Si(CH_3)_3 \xrightarrow{CN} CN \xrightarrow{1. C_6H_5CHO, -78^\circ, 14 \text{ h}} OSi(CH_3)_3 \xrightarrow{I. C_8H_5CHO, -78^\circ, 14 \text{ h}} OSi(CH_3)_3 \xrightarrow{$$

for the removal of the silyl group once it has done its job directing, for example, the stereochemistry of an addition. (318, 370-373)

Under very special conditions, an α , ω -silicon shift can be thermodynamically favorable. One example is used for the preparation of allyl alcohols. (374)

CH₃

$$C_{6}H_{5}$$

$$C_{70-80\%} 9:1$$

Although the elimination of β -silyl sulfoxides can be considered a homo-Peterson analog, the requirements of this elimination suggest that the silyl group is acting as a bulky proton equivalent. (375-377) Indeed, there are many

$$CCH_3)_3Si$$
 SOC_6H_5
 CCl_4
 O
 CCl_4
 O
 O

reactions for the formation of alkenes by elimination from the = Si - C - C -X system, where the silicon acts as a proton equivalent to an external nucleophile, and X is a leaving group. (378-380)

3.4.1.3. The Brook Rearrangement and Related Reactions (381-383) α -Hydroxysilanes can undergo a rearrangement after deprotonation. The product, or product mixture, depends upon the relative stabilities of the two anions 178 and 179. This reaction, which is only indirectly related to the Peterson reaction,

$$R \xrightarrow{OH} \xrightarrow{\text{Basc}} R \xrightarrow{O^{-}} \xrightarrow{R} \xrightarrow{OSi(CH_{3})_{3}} \xrightarrow{H^{\cdot}} R \xrightarrow{OSi(CH_{3})_{3}} \xrightarrow{H^{\cdot}} R \xrightarrow{OSi(CH_{3})_{3}}$$

$$178 \qquad 179 \qquad 180$$

has enjoyed considerable usage in synthetic methodology. (384-389) The reverse reaction, conversion of a silyl enol ether into an α -hydroxysilane, can be accomplished by a strong base. (390-393) Analogous rearrangements of a silyl group from sulfur to carbon (394) and from oxygen to nitrogen (395) also

proceed.

A reaction similar to the Brook rearrangement is observed when vinyldisiloxanes are reacted with an alkyllithium. (396)

$$(CH_3)_3SiOSiCH = CH_2 \xrightarrow{\begin{array}{c} \text{I. } i \cdot C_3H_3\text{Li. } (C_3H_3)_2O, \ 0^{\circ} \\ \text{C}H_3 \end{array}} \begin{array}{c} CH_3 \\ \text{HOSiCH} < Si(CH_3)_3 \\ CH_3 \end{array}$$

A further variant of the rearrangement is observed for the deoxygenation of isocyanates with *tert*-butyldiphenylsilyllithium. The mechanism was elucidated by NMR studies. (397, 398)

$$C_{6}H_{11}N = C = O$$

$$(C_{6}H_{5})_{2}(t-C_{4}H_{9})Si = Li$$

$$\longrightarrow C_{6}H_{11}$$

$$N = C$$

$$Si(C_{4}H_{9}-t)(C_{6}H_{5})_{2}$$

$$OSi(C_{4}H_{9}-t)(C_{6}H_{5})_{2}$$

$$\longrightarrow C_{6}H_{11}$$

$$N = C$$

$$Li$$

$$\longrightarrow C_{6}H_{11}$$

A 1,3-silicon migration is observed when β -hydroxyvinylsilanes **181** are treated with a catalytic amount of sodium or potassium hydride in HMPA. (399, 400) The mechanism of this reaction is not clear, but probably involves a four-center intramolecular transition state, although an intermolecular pathway has not been excluded experimentally.

3.4.1.4. The Sila-Pummerer Rearrangement

In many respects, this rearrangement is closely related to Peterson-type transformations because a silyl group is transferred from carbon to oxygen, followed by expulsion of the silanoxide moiety, which can then react further with the resultant sulfur ylide. The last

$$C_{6}H_{5} \xrightarrow{\overset{\bullet}{\text{Si}}} OSi(CH_{3})_{3} \xrightarrow{C_{6}H_{5}} OSi(CH_{$$

part of the reaction is susceptible to stereoelectronic effects, and the sulfur ylide can lose a proton to afford a vinyl sulfide as a competing reaction pathway. (16, 148, 150, 153, 401-407) The analogous reaction has been observed for α -silyl selenides, although it is not as clean as in the sulfur series. (408-411)

3.4.1.5. Other Reactions

Reactions of the β -hydroxysilane **182**, obtained from the α -selenoselenide, with tin(II) chloride results in formation of the allyl-selenide **183** through selenium migration. However, treatment of alcohol **184**

$$C_{6}H_{5}Se \xrightarrow{CHO} \xrightarrow{1. (CH_{3})_{3}SiCH_{2}MgCl} C_{6}H_{5}Se \xrightarrow{I. (CH_{3})_{3}} Si(CH_{3})_{3}$$

$$n-C_{4}H_{9} \xrightarrow{H} 182$$

$$\frac{SnCl_{2}}{CH_{2}Cl_{2}} n-C_{4}H_{9} \xrightarrow{SeC_{6}H_{3}} SeC_{6}H_{3}$$

with silver nitrate results in the β -silyl aldehyde 185; treatment with tin(II) results in a mixture of aldehyde 185 and the corresponding allylselenide. (412)

4. Comparison with Related Reactions

The Peterson olefination reaction is a member of a general class of transformations which provide an alkene by condensation of a functionalized carbanion with a carbonyl compound, followed by elimination of the oxygen and functional group. (413) The best-known reaction of this type is the Wittig reaction ($G = {}^{+}PR_3$), (414-418) together with its variants. (419) Other elements that have been used for the elimination described in Eq. 31 are: aluminum ($G = AIR_2$), (420)

$$\sum_{R^2}^{R^1} G + \sum_{R^3}^{Q} R^4 \longrightarrow R^1 \xrightarrow{R^2} R^3 \longrightarrow R^2 \xrightarrow{R^4} R^3$$
 (31)

antimony ($G = SbR_2$), (421) arsenic ($G = AsR_2$), (417, 422, 423) boron ($G = BR_2$), (424, 425) lead (G = PbR), (421, 426) magnesium (G = MgR), (427) mercury (G = HgR), (428, 429) selenium (G = SeR), (430) tellurium (G = TeR), (431, 432) tin ($G = SnR_3$), (433) zinc (G = ZnR), (434) and sulfur as sulfides, (435) sulfoxides, (436-438) sulfinamides, (439, 440) and sulfones. (249, 441) Many of these eliminations require special conditions or the change of oxidation level, as with sulfones.

Despite the proliferation of elements, the only examples that have enjoyed widespread usage and compete with the Peterson protocol are those of organotin and organophosphorus compounds.

4.1.1.1. Organotin Compounds

Tin is in the same period as silicon and therefore deserves special mention. β -Hydroxystannanes **186** are prepared by methods similar to those used for organosilanes. For example, an epoxide is opened by triphenylstannyl alkali metals, (426) while carbonyl compounds condense with trialkylstannylmethyllithium. (442-444) In general, elimination from a β -hydroxysilane

186 requires a potassium counterion, rather than lithium, or acidic conditions. More vigorous conditions (perchloric acid) are required for triphenylstannyl

$$(CH_3)_3Sn$$
 $Sn(CH_3)_3$ $\xrightarrow{1. n-C_4H_4Li}$ OH $Sn(CH_3)_3$ $\xrightarrow{SiO_2}$

derivatives of **186** than for the trimethylstannyl series which eliminate on silica. (442) Other electrophiles, such as esters which provide ketone enolates through tin elimination from the intermediate α -stannylketone (445) and α -chloroketones, (442) also react with α -stannylcarbanions.

When other anion-stabilizing groups are present in conjugation with α -stannylcarbanions, alkene formation is facilitated and the intermediate β -hydroxystannane need not be isolated. (313-445a) The stereochemistry of this elimination is analogous to the Peterson olefination reaction: *anti* elimination is observed under acidic conditions, while the *syn* pathway is followed for thermolytic, and presumably basic, conditions. (446)

At present, the methodology for the formation of alkenes from β -hydroxystannanes is still under development. As cited above, the eliminations are facile, but the high formula weight of the stannyl moiety, particularly if tri-n-butylstannyl is employed, coupled with the additional separation of the nonvolatile tin byproduct, detract from the use of this protocol. In addition, when the tin is juxtaposed to an electron-withdrawing group, purification of

$$C_6H_5CHO \xrightarrow[-2]{1. (C_6H_5)_3SnCHLiSC_6H_5} C_6H_5S \xrightarrow[-2]{H-C_6H_5} C_6H_5S \xrightarrow[-2]{C_6H_5} C_6H_5$$

the stannane can be problematic. (260) In many systems the choice of base to effect formation of the α -stannyl carbanion is limited to lithium amides in order to avoid transmetalation.

4.1.1.2. Wittig Reaction

The Peterson olefination reaction usually gives rise to hexamethyldisiloxane as the byproduct, which because of its low boiling point (100°) is easily removed when the reaction or extraction solvent is evaporated. In contrast, the byproduct of the Wittig reaction is triphenylphosphine oxide, which on occasions can be troublesome to remove; use of phosphonate derivatives can alleviate this problem.

The stereochemical outcome of the Peterson reaction, when only alkyl substituents are present, may be controlled with certainty, although separation of the diastereomeric β -hydroxysilanes may be necessary. Such a separation is not required to control the stereochemical outcome of the Wittig reaction; the major isomer is dependent on the reaction conditions. A variety of models have been proposed to rationalize and predict the alkene stereoselectivity from a phosphorus ylide. (416, 447-449) These arguments were based on a rationale derived from the observed E:Z ratios, but the intermediate can be observed by NMR techniques. (450) Thus the reaction outcome can be predicted with certainty. (451, 452)

When an electron-withdrawing group is present on the same carbon atom as the phosphorus moiety, the Wittig reaction usually provides the E alkene as the major product. (416) The stereochemical outcome of the analogous Peterson reaction can be controlled. In many cases, however, poor stereochemical control is observed. This property can be exploited. Peterson methodology provides the E,Z dienic ester 187 in a 1:1 mixture with the E,E isomer 188. (205, 453) The Wittig protocol gives a 35:65 mixture of 187 and 188, at best. Thus the silicon method is the route of choice for the preparation of the E,Z ester 187.

When a heteroatom is present in the carbonyl moiety, chelation-controlled condensation occurs, which in turn leads to stereoselectivity. (50, 84) In some cases,

the corresponding Wittig approach can show poor selectivity, (50) or give the opposite selectivity. (84)

OSi(CH₃)₂C₄H₉-t
$$OSi(CH3)2C4H9-t$$

$$OC2H5$$

$$+ OSi(CH3)2C4H9-t$$

$$OC2H5$$

$$(C6H5)3P = CHCO2C2H5, C6H5CO2H, C6H5CH3, heat (80%) 96:4 (CH3)5SiCHLiCO2C3H5, THF, -78° (14:86)$$

An additional advantage of the Peterson olefination over the Wittig reaction occurs when an electron-withdrawing group is present, in that the α -silyl carbanion condenses with carbonyl compounds and undergoes elimination of the silicon moiety rapidly (within minutes). The corresponding reaction with a stabilized phosphorus ylide is often extremely slow.

Finally, the Peterson reaction can proceed when a Wittig reaction fails as a consequence of less steric constraints preventing attack of the ylide on the carbonyl group (see Eq. 15).

The choice between use of a phosphorus or silicon reagent depends on the compound required as product. If the general reaction requirements include a rapid reaction with a stabilized carbanion, the formation of a thermodynamically less-stable isomer of a functionalized alkene, a simple

separation procedure for byproducts, or methylenation of a hindered carbonyl group, the elimination of a silicon group would prove advantageous.

In contrast, stereochemical control for the preparation of hydrocarbon alkenes and the thermodynamically most stable isomer of functionalized alkenes, the availability of the phosphorus precursors, and the greater anion-stabilizing properties of this element which facilitates carbanion formation, often give a Wittig variant a strategic advantage. All of these variations are noted throughout this chapter. Unfortunately, it is not possible to generalize which element, phosphorus or silicon, is most advantageous. Each case must be considered on its own merits (e.g., whether the α , β -unsaturated ester 187 or 188 is the required product). As illustrated in this chapter and its accompanying tables, the Peterson olefination reaction can have distinct advantages over the Wittig reaction under certain constraints, and in some cases the two approaches are complementary.

5. Experimental Conditions

The experimental conditions for the majority of Peterson olefination reactions require condensation of a carbanion, derived from a silane, with a carbonyl compound. Formation of this carbanion invariably involves use of a strong base, such as *n*-butyllithium or lithium diisopropylamide, in an ethereal solvent. Reactions must therefore be performed under an inert atmosphere (nitrogen or argon). The most commonly used solvents are tetrahydrofuran, diethyl ether, and 1,2-dimethoxyethane. To obtain optimum yields, these solvents should be freshly distilled from lithium aluminum hydride or sodium—benzophenone.

When the α -silyl carbanion contains other α -functional groups, the substituted alkene is usually generated under the conditions used for the condensation step, and no special precautions are necessary during workup. In the absence of any anion-stabilizing moities, the β -hydroxysilane can be isolated. To alleviate any problem of premature elimination, strongly acidic or basic conditions must be avoided during this isolation procedure.

6. Experimental Procedures

The procedures presented here have been chosen to illustrate the application of the Peterson olefination reaction for the preparation of a wide variety of both functionalized and nonfunctionalized alkenes. General procedures for the elimination of β -hydroxysilanes have also been included for solely alkyl-substituted examples.

As the success of this synthetic protocol for the formation of olefins relies upon the availability of an appropriately substituted silane, illustrative examples of the preparation of this latter class of compounds are included in this section. Although the preparation of 5-trimethylsilyl-4-octanol is accomplished by reduction of a carbonyl precursor rather than a Peterson protocol, the first four procedures are included to illustrate the problems associated with a stereospecific β -hydroxysilane synthesis.

Unless stated otherwise, the reaction procedures outlined below can be performed in the appropriate size three-necked, round-bottomed flask fitted with a dropping funnel, nitrogen inlet, serum stopper, thermometer, and magnetic stirrer bar. Reagents can be added by syringe through the serum stopper.

6.1.1. 5-Trimethylsilyl-4-octanol (Preparation of a β -Hydroxysilane) (27) 6.1.1.1.1. 2-Trimethylsilylvaleric Acid

A solution of vinyltrimethylsilane (1.0378 g, 10.35 mmol) in tetrahydrofuran (50 mL) was cooled to -78° , and a solution of ethyllithium (8.25 mL of a 1.63 M solution in ether, 13.4 mmol) added. The reaction mixture was stirred at -78° for 10 hours, warmed to 0° for 1 hour, and then cooled again to -78° . The mixture was then added to excess crushed dry ice in pentane. As soon as the excess solid carbon dioxide had evaporated, the resultant mixture was added to cold 6 M hydrochloric acid, forming a slurry containing ice. When the ice had melted, the mixture was shaken in a separatory funnel, and the organic layer separated, dried (MgSO₄), concentrated, and evaporatively distilled (oven temperature 150°) to give 2-trimethylsilylvaleric acid (1.515 g, 84%) as a liquid which solidified below room temperature; IR (film) 3570–2500, 1690, 1250, 850 cm $^{-1}$; 1 H NMR (CCl₄) δ 0.00 (2H, s, impurity), 0.10 (9H, s), 0.8–1.1 (3H, br), 1.1–1.8 (5H, br), 1.8–2.1 (1H, m).

6.1.1.1.2. 5-Trimethylsilyl-4-octanone

Oxalyl chloride (0.58 mL, 0.86 g, 6.8 mmol) was added to a solution of 2-trimethylsilylvaleric acid (0.396 g, 2.27 mmol) in hexane (15 mL), the reaction mixture being protected from the atmosphere by a drying tube. The mixture was stirred for 2 hours at ambient temperature, then placed under aspirator vacuum to give the crude acid chloride which was used in the

following reaction sequence without further purification.

A mixture of copper(I) iodide (1.30 g, 6.8 mmol) and diethyl ether (10 mL) was cooled to 0° , and a solution of *n*-propyllithium (11.2 mL of a 1.23 M solution in diethyl ether, 13.8 mmol) was added. After stirring for 15 minutes, the reaction mixture was cooled to -78° , taken up in a syringe, and then added to a solution of the above acid chloride in diethyl ether (15 mL) which was also cooled to -78° . The resultant mixture was stirred for 1 hour at -78° , for 1 hour with warming to 0° , and for 30 minutes at 0° ; then the mixture was poured into 10% aqueous ammonium chloride solution overlaid with diethyl ether. The organic layer was separated, dried (MgSO₄), concentrated and evaporatively distilled (oven temperature 150°) to give 5-trimethylsilyl-4-octanone (0.293 g, 64%); IR (film) 2940, 1690, 1250, 840 cm⁻¹; ¹H NMR (CHCl₃) δ 0.00 (9*H*, s), 0.7–1.9 (14.5*H*, br), 2.0–2.5 (3*H*, m).

6.1.1.1.3. 5-Trimethylsilyl-4-octanol

Diisobutylaluminum hydride (26.2 mL of a 0.96 M solution in hexane, 25.2 mmol) and pentane (10 mL) were placed in one side of a two-bottomed flask; in the other side of the flask were placed 5-trimethylsilyl-4-octanone (1.679 g, 8.38 mmol) and pentane (20 mL). The flask was immersed in a liquid nitrogen—ethanol bath (–120°) for 1 hour to allow the temperature to equilibrate. The flask was then tipped to mix the contents. The resultant mixture was kept at –120° for 3 hours, and then warmed slowly to –20° overnight. The mixture was poured into 2 M hydrochloric acid overlaid with ether. The organic layer was washed with saturated aqueous sodium hydrogen carbonate solution, dried (MgSO₄), concentrated, and evaporatively distilled (oven temperature 160°) to give the β -hydroxysilane (1.6540 g, 98%); IR (film) 3450, 2940, 1250, 840 cm $^{-1}$; 1 H NMR (CHCl $_{3}$) δ 0.00 (9*H*, s), 0.7–1.1 (7*H*, br), 1.1–1.8 (10*H*, br), 2.1–2.4 (1*H*, m), 3.85 (1.4*H*, br).

6.1.1.1.4. 5-Trimethylsilyl-4-octanol (Alternative)

A solution of vinyltrimethylsilane (0.679 g, 6.77 mmol) in tetrahydrofuran (10 mL) was cooled to -78° , and ethyllithium (7.65 mL of a 1.15 M solution in diethyl ether, 8.8 mmol) was added. The mixture was stirred for 2 hours at -78° , warmed over 1 hour to -30° , and cooled again to -78° . n-Butyraldehyde (0.66 mL, 0.54 g, 7.5 mmol) was added, and the reaction mixture warmed to room temperature over 1 hour, and then stirred for an additional 2 hours. The reaction mixture was poured into saturated aqueous sodium chloride solution overlaid with diethyl ether. The organic layer was separated, dried (MgSO₄), concentrated, and evaporatively distilled (oven temperature 120°) to give 5-trimethylsilyl-4-octanol (1.272 g, 93%), whose spectroscopic properties are given above.

6.1.1.2. Elimination of 5-Trimethylsilyl-4-octanol with Potassium Hydride in Tetrahydrofuran (27)

Potassium hydride (0.10 g of a 50% slurry in oil, ca. 1.25 mmol) was stirred with pentane (4 mL), and the liquid removed by pipet. To the residue was added a solution of 5-trimethylsilyl-4-octanol (76.5 mg, 0.378 mmol), prepared by the reductive methodology outlined above in tetrahydrofuran (5 mL) and n-butylbenzene (98.8 mg, internal standard for the VPC analysis). The mixture was stirred for 1 hour at ambient temperature and then added to cold 10% aqueous ammonium chloride overlaid with diethyl ether. The ethereal layer was separated, dried (MgSO₄), and analyzed by VPC showing a 5:95 ratio of (Z)- and (E)-4-octene formed in 96% yield.

6.1.1.3. Elimination of 5-Trimethylsilyl-4-octanol with Sodium Acetate in Acetic Acid (27)

5-Trimethylsilyl-4-octanol (98.1 mg, 0.485 mmol), prepared by the reductive method outlined above was added to glacial acetic acid (15 mL) saturated with sodium acetate at 50° together with n-butylbenzene (110 mg, internal standard for the VPC analysis). The reaction mixture was stirred at 50° for 30 minutes, cooled to room temperature, and poured into saturated sodium hydrogen carbonate solution overlaid with pentane. The organic layer was separated, washed with saturated aqueous sodium hydrogen carbonate solution, dried (MgSO₄), and analyzed by VPC showing a 98:2 ratio of (Z)- and (E)-4-octene formed in 85% yield.

6.1.2. Methyl 4,6-O-Benzylidene-3-deoxy-3-C-methylene- α -D-ribo-hexopyranoside (Reaction of Trimethylsilylmethylmagnesium Chloride) (454)

6.1.2.1.1. Methyl 2-O-Benzoyl-4,6-O-benzylidene-3-[(trimethylsilyl)methyl]- α -D-allopyranoside

Magnesium turnings (2.57 g, 106 mmol) were placed in a 1-L, three-necked flask equipped with a dry-ice condenser and equilibrating side-arm addition funnel. Serum stoppers were attached, the system flushed with argon, and flame dried. A flow of argon was passed through the apparatus for the duration of the experiment. Anhydrous diethyl ether (75 mL) and (bromomethyl)trimethylsilane(0.841 g, 5.0 mmol) were introduced. (Chloromethyl)trimethylsilane (14.2 g, 116 mmol) in diethyl ether (50 mL) was added dropwise at a rate sufficient to maintain a gentle rate of reflux. The mixture was stirred at reflux for an additional 1 hour. The apparatus was cooled and a solution of methyl 2-O-benzoyl-4,6-O-benzylidene- α -D-ribo-hexopyranosid-3-ulose (6.33 g, 16.5 mmol) in warm toluene (400 mL) was added dropwise. The solution was stirred for 3 hours, quenched with saturated aqueous ammonium chloride solution, and extracted with ether (1 L). The extracts were dried (MgSO₄) and evaporated to give the crude β -hydroxysilane as a syrup (8.85 g, 90%); ${}^{1}H$ NMR (CDCl₃) δ 0.10 (9*H*, s), 1.20 and 1.37 (2H, AB q), 3.40 (4H, s), 3.5–4.5 (4H, m), 4.88 and 5.10 (2H, AB q), 7.58 (1*H*, s), 7.1–7.6 (8*H*, m), 8.0–8.3 (2*H*, m).

6.1.2.1.2. Elimination with Potassium Hydride

The crude β -hydroxysilane was dissolved in anhydrous tetrahydrofuran (250 mL) and added carefully to a suspension of potassium hydride (8.5 g, 205 mmol) in tetrahydrofuran (225 mL). A reflux condenser was attached and the mixture heated under reflux for 4 hours. The opaque brown liquid was poured slowly into saturated aqueous ammonium chloride solution (300 mL) overlaid with diethyl ether (500 mL), and the layers separated. The aqueous layer was extracted twice with diethyl ether. The combined extracts were evaporated to give crude methyl 4,6-benzylidene-3-deoxy-3-*C*-methylene- α -D-*ribo*-hexopyranoside (3.9 g). Recrystallization from dichloromethane—hexane gave the pure alkene (2.71 g, 58%) in two crops; mp 194.5–195° and mp 188–189°: $\alpha > 200$

6.1.2.2. Reaction of Trimethylsilylbenzyl Anion with Benzaldehyde (Direct Deprotonation) (91)

Methyllithium (0.01 mol of a solution in pentane) was added to a stirred, ice-cooled solution of benzyltrimethylsilane (1.64 g, 0.01 mol) in HMPA (10 mL). Stirring was continued for 2 hours, when a solution of benzaldehyde (1.1 g, 0.01 mol) in diethyl ether (5 mL) was added. The ice bath was removed and the reaction mixture stirred at ambient temperature for 1 hour. The mixture was poured into ice-cooled 1% hydrochloric acid (25 mL). The ethereal layer was separated, and the aqueous layer extracted with ether (2 × 10 mL). The combined extracts were washed with water, dried (Na₂SO₄– Na₂CO₃), and evaporated to give a brown liquid (2.4 g). Recrystallization of this crude material from ethanol gave *trans*-stilbene (0.6 g); mp 124–125°. The filtrate was evaporated to give *cis*-stilbene (0.3 g); bp 105–106°/5 mm Hg. Total yield of stilbene was 50%.

6.1.2.3. 1,1-Diphenyl-2-(2-pyridyl)-1-ethene (96)

A 15% solution of *n*-butyllithium (13 g, 0.03 mol) in hexane was added to a solution of diisopropylamine (0.03 mol) in tetrahydrofuran (54 mL) at -75° . To the solution, 2-(trimethylsilylmethyl)pyridine (0.03 mol) was added dropwise over 5 minutes. After an additional 10 minutes at this temperature, the mixture was treated with benzophenone (0.045 mol) in tetrahydrofuran. The resultant mixture was stirred for 1 hour at -75° and then allowed to warm to room temperature with stirring over 2 hours. The reaction mixture was quenched with water (60 mL) and extracted with diethyl ether. The extracts were dried, evaporated, and recrystallized from petroleum ether to give the alkene (53%); mp 120–121.5°; 1 H NMR (CCl₄) $^{\circ}$ 6.5–7.55 (12*H*, m), 8.48 (1*H*, dd).

6.1.2.4. Reaction of 1-Triphenylsilyl-1-hexyllithium with Benzaldehyde (Alkyllithium Addition to a Vinylsilane) (91)

A solution of triphenylvinylsilane (1.43 g, 5 mmol) in diethyl ether (50 mL) was added dropwise over 1.75 hours to a stirred solution of *n*-butyllithium (2.2 mL,

5 mmol) in diethyl ether. After 5 minutes, benzaldehyde (0.53 g, 5 mmol) was added over 15 minutes to the stirred reaction mixture. The mixture was then stirred under reflux for 30 hours, cooled, and poured into 10% aqueous ammonium chloride solution (50 mL). The ether layer was separated and the aqueous phase was extracted with ether (2 × 25 mL). The combined extracts were dried (Na_2SO_4) and evaporated to give 2.2 g of a mixture of pale yellow oil and white solid. Treatment with n-pentane and filtration afforded triphenylsilanol (0.6 g); mp 156–157.5°. Evaporation of the filtrate gave an oil, which upon distillation yielded 1-phenylheptene (0.4 g, 46%) as a 1:1 mixture of the E and Z isomers (VPC analysis); bp 46°/0.01 mm Hg; IR (neat) 2910, 2830, 2770, 1610, 1502, 1478, 1458, 973, 772, 747, 704, 697, cm⁻¹; ¹H NMR (CCl₄) δ 0.9 (3H, t) 1.48 (6H, m), 2.2 (2H, m), 6.13 (2H, m), 7.23 (5H, br s).

6.1.2.5. 1-Phenylbut-1-ene (Reductive Cleavage of a Phenylthio Group with Lithium Naphthalenide) (157)

Phenyl(phenylthio)(trimethylsilyl)methane (2.72, 0.01 mol) in tetrahydrofuran (10 mL) was added to a solution of lithium naphthalenide [prepared from lithium (0.14 g, 0.02 mol) and naphthalene (2.56 g, 0.02 mol)] in tetrahydrofuran (50 mL) at -78° . The mixture was stirred for 30 minutes at this temperature. Pentanal (0.01 mol) in tetrahydrofuran (5 mL) was added and the mixture allowed to warm slowly to room temperature. Hydrochloric acid (2 M, 50 mL) was added and the mixture stirred overnight. The mixture was poured into saturated aqueous ammonium chloride solution (50 mL) and extracted with diethyl ether (3 × 50 mL). The extracts were washed with 2 M sodium hydroxide solution (2 × 40 mL) and saturated aqueous sodium chloride solution, dried (Na₂SO₄), and the alkene isolated by fractional distillation (1.24 g, 85%) as a 1:1 mixture of the E and Z isomers.

6.1.3. (4-tert-Butylcyclohexylidene)cyclohexylmethane [Displacement of a Phenylthio Group by Lithium 1-(Dimethylamino)naphthalenide] (155) 6.1.3.1.1. Lithium 1-(Dimethylamino)naphthalenide

To a flame-dried two-necked flask, which was continuously purged with argon and equipped with a glass-coated stirring bar, was added tetrahydrofuran (10 mL) and lithium ribbon (40 mg, 5.8 mmol). The mixture was cooled to –45 to –55° by a 1-hexanol/dry ice bath. 1-(Dimethylamino)naphthalene (0.84 mL, 0.87 g, 5.1 mmol) was added slowly. The dark green color of the radical anion appeared within 10 minutes and was complete after 3.5 hours of rapid stirring. This procedure yielded an approximately 0.5 M solution of lithium 1-(dimethylamino)-naphthalenide.

6.1.3.1.2. 1-(Phenylthio)-1-(trimethylsilyl)-4-tert-butylcyclohexanone
A solution of 1,1-bis(phenylthio)-4-tert-butylcyclohexanone (1.44 g, 4.05 mmol) in tetrahydrofuran (5 mL) was added to a solution of lithium
1-(dimethylamino)-naphthalenide (10.4 mmol) in tetrahydrofuran (20 mL) at
-78° and the resultant mixture was stirred for 15 minutes. Freshly distilled

chlorotrimethylsilane (0.60 mL, 0.51 g, 4.7 mmol) was added, and within 1 minute the reaction was quenched with excess water at -78° . The solvent was removed under reduced pressure and the residue taken up in diethyl ether. This mixture was washed twice with 5% sodium hydroxide solution and twice with 5% sulfuric acid and saturated aqueous sodium hydrogen carbonate solution, dried (MgSO₄), and evaporated to give the crude α -thiosilane. Column chromatography afforded 1-(phenylthio)-1-(trimethylsilyl)-4-*tert*-butylcyclohexanone (1.08 g, 83%); mp

1-(phenylthio)-1-(trimethylsilyl)-4-*tert*-butylcyclohexanone (1.08 g, 83%); mp 83.1–83.9°; IR (CCl_4) 3090, 2950, 1440, 1400, 1370, 1250, 1120, 1020 cm⁻¹; ¹H NMR (CCl_4) δ 0.23 (9*H*, s), 0.80 (9*H*, s), 0.97–2.00 (9*H*, s).

6.1.3.1.3. (4-tert-Butylcyclohexylidene)cyclohexylmethane A solution of 1-(phenylthio)-1-(trimethylsilyl)-4-*tert*-butylcyclohexanone (0.20 g, 0.64 mmol) in tetrahydrofuran (1 mL) was added to a solution of lithium 1-(dimethylamino)naphthalenide (1.5 mmol) in tetrahydrofuran (3 mL) and the resultant mixture stirred for 4 minutes at -78° . Cyclohexanecarboxaldehyde (0.10 mL, 0.09 g, 0.08 mmol) was added and the mixture stirred for 15 minutes. The reaction was worked up as described in the previous procedure to give, after flash chromatography, the β -hydroxysilane; IR (CCl₄) 3625, 2925, 1440, 1335, 1225 cm⁻¹; ¹H NMR (CDCl₃) δ 0.13 (9*H*, s), 0.83 (9*H*, s), 0.66–1.97 (21*H*, m), 3.13 (1*H*, br m).

The alcohol was dissolved in tetrahydrofuran (3 mL) and treated with hexane-washed potassium hydride in tetrahydrofuran at room temperature for 1.5 hours. The resultant mixture was poured into ice water overlaid with diethyl ether. The organic layer was separated, dried (MgSO₄), and evaporated to give, after column chromatography (SiO₂; hexanes), the alkene (0.12 g, 80% overall); IR (neat) 2950, 2850, 1485, 1395, 1250 cm⁻¹; ¹H NMR (CCI₄) δ 0.87 (9*H*, s), 0.57–2.80 (20*H*, m), 4.75–4.97 (1*H*, br d).

6.1.3.2. 3,4-Dimethoxystyrene (Displacement of a Stannyl Group) (167) To a flame-dried flask with a serum-stopped side arm under nitrogen was added a solution of (tri-n-butylstannyl)(trimethylsilyl)methane (2.263 g, 6.00 mmol) in tetrahydrofuran (8 mL). The flask and contents were cooled to 0°, when n-butyllithium (4.0 mL of a 1.5 M solution in hexane, 6.0 mmol) was added dropwise with stirring. After 30 minutes, the mixture was cooled to -78° and veratraldehyde (998 mg, 6.0 mmol) in tetrahydrofuran (2 mL) added dropwise. The reaction was stirred for 5 minutes at -78° , then quenched with water. The mixture was extracted with hexane (3 × 10 mL). The combined extracts were washed with water, dried (Na₂SO₄), and concentrated under reduced pressure. Rapid filtration of this crude product through silica (15 g) with hexane afforded tetra-n-butyltin (2.083 g, 100%). Further elution of the mixture with ethyl acetate and hexane (1:1) gave the β-hydroxysilane, which was then stirred with a two-phase mixture comprised of hexane (10 mL) and 50% acetic acid (10 mL) for 30 minutes. The layers were then separated and

the organic phase washed with 5% aqueous sodium hydrogen carbonate solution and water, dried (Na_2SO_4), and concentrated under reduced pressure. Shortpath column chromatography eluting with hexane and ethyl acetate (9:1) gave 3,4-dimethoxystyrene (760 mg, 77%).

6.1.3.3. 1,2-Tridecadiene (172)

n-Butyllithium (0.024 mol) was added slowly to a solution of α -bromovinyltriphenylsilane (8.8 g, 0.024 mol) in diethyl ether (60 mL) at -24° and the resultant mixture stirred for 1.5 hours. Undecanal (0.024 mol) in diethyl ether (10 mL) was added slowly and the reaction mixture stirred at -24° for 1 hour. Stirring was continued overnight at ambient temperature. The mixture was then poured into 10% hydrochloric acid (50 mL). The organic phase was separated, washed with water (50 mL), dried (MgSO₄), and evaporated under reduced pressure to give the crude alcohol. This alcohol was dissolved in carbon tetrachloride (25 mL) and a 25% excess of thionyl chloride added. The reaction mixture was stirred for 2 hours and then evaporated to give the crude chloride. This crude chloride was dissolved in dimethyl sulfoxide (25 mL per gram of tetraethylammonium fluoride used) and a 10% excess of tetraethylammonium fluoride added. The mixture was stirred for 2 hours at room temperature. The mixture was partitioned between diethyl ether (25 mL) and water (25 mL). The ethereal phase was separated, dried (MgSO₄), and evaporated to give the crude allene. The crude product was treated with hexane (10 mL) and cooled. Filtration gave triphenylsilanol, while distillation afforded 1,2-tridecadiene (44%); bp 63–64°/0.1 mm Hg; IR 1960 cm⁻¹; ¹H NMR δ 0.75–2.25 (21*H*, m), 4.6 (2*H*, m), 5.05 (1*H*, m).

6.1.4. α , β -Unsaturated Esters

6.1.4.1.1. Ethyl Trimethylsilylacetate (192)

In a 2-L three-necked flask equipped with a mechanical stirrer, dropping funnel, and condenser arranged for distillation were placed benzene (500 mL) and strips of freshly sandpapered zinc (31.7 g, 0.5 mol). To ensure dryness, 75 mL of the benzene was distilled off, and the condenser replaced by a reflux condenser with a calcium chloride guard tube. A solution of redistilled chlorotrimethylsilane (43.5 g, 0.40 mol) and ethyl bromoacetate (83.5 g, 0.50 mol) in benzene (100 mL) and anhydrous diethyl ether (100 mL) was added over 30 minutes to maintain a gentle reflux. A crystal of iodine can be used to initiate the reaction. Occasionally the reaction can be vigorous and require cooling. After the addition was complete, the mixture was heated under reflux until all of the zinc had dissolved, 1-3 hours. The mixture was cooled in an ice bath, and 1 M hydrochloric acid (400 mL) added over 15 minutes with stirring. The mixture was stirred for a further 5 minutes and separated. The organic layer was washed with 1 M hydrochloric acid, and the combined aqueous layers extracted with ether. The combined organic extracts were washed with water, saturated sodium hydrogen carbonate solution, water again, and dried. Frequently, a precipitate formed in the hydrogen carbonate

solution, but this was drawn off and discarded. The solvents were distilled. Fractional distillation gave impure ethyl trimethylsilylacetate (46.1 g, 72%); bp 76–77°/40 mm Hg; 1 H NMR (C H_2 Cl₂) δ 0.15 (9H, s), 1.24 (3H, t), 1.87 (2H, s), 4.02 (2H, q).

6.1.4.1.2. tert-Butyl Trimethylsilylacetate (191, 455)

tert-Butyl acetate (32.95 mL, 28.4 g, 0.245 mol) in tetrahydrofuran (40 mL) was added dropwise to a solution of lithium diisopropylamide [from diisopropylamine (37.25 mL, 27.0 g, 0.267 mol) and n-butyllithium (150 mL of a 1.67-M solution in hexane, 0.250 mol)] in tetrahydrofuran (400 mL) at -78° over 0.5 hour. The mixture was stirred for 1 hour at this temperature and then chlorotrimethylsilane (26.1 g, 30.5 mL, 0.241 mol) was added. The reaction mixture was allowed to warm to room temperature overnight. The reaction was quenched by pouring into saturated aqueous ammonium chloride solution (50 mL). The mixture was extracted with diethyl ether (3 × 100 mL). The combined extracts were washed with saturated aqueous sodium chloride solution (75 mL), dried (Na₂SO₄), concentrated under reduced pressure, and distilled to give the α -silyl ester (29.7 g, 66%); bp 67°/13 mm Hg; IR (film) 1740 cm⁻¹; 1 H NMR (CDCl₃) δ 0.09 (9H, s), 0.88 (9H, s), 1.80 (2H, s).

6.1.4.1.3. Ethyl 2-Undecenoate (40)

Dicyclohexylamine (365 mg, 2.0 mmol) was dissolved in dry tetrahydrofuran (10 mL). The solution was cooled to -78° and then treated with n-butyllithium (1.35 mL of a 1.5 M solution in hexane). The mixture was stirred for 15 minutes. A solution of ethyl trimethylsilylacetate (320 mg, 2.0 mmol) in tetrahydrofuran (1.0 mL) was added dropwise at -78°, and the resultant solution was stirred at this temperature for 10 minutes when *n*-nonanal (142 mg, 1.0 mmol) in tetrahydrofuran (1 mL) was added dropwise. The mixture was stirred at -78° for 1 hour, at -25° for 1 hour, and at 25° for 1 hour. Finely ground sodium hydrogen sulfate monohydrate (0.22 g) was added and the mixture stirred for 10 minutes. The solid was filtered off and water added to the filtrate. This solution was extracted with ethyl acetate (3 × 5 mL). The combined extracts were dried, evaporated, and chromatographed on a silica thin-layer plate to give ethyl (Z)-2-undecenoate (51 mg, 24%); IR (neat) 1724, 1646, 1470, 1418, 1186, 1040, 822 cm⁻¹; ¹H NMR (CDCl₃) δ 0.68–1.04 (3*H*, m), 1.05–1.75 (12*H*, m), 1.24 (3H, t), 2.57 (2H, br d), 4.06 (2H, q), 5.62 (1H, d, J = 9.3 Hz), 6.05 (1H, dt, J = 6.3 and 9.3 Hz), and ethyl (E)-2-undecenoate (128 mg, 58%); IR (neat) 1724, 1656, 1470, 1270, 1185, 1047, 985 cm⁻¹; ¹H NMR (CDCl₃) 0.70–1.08 (3H, m), 1.09–1.85 (12H, m), 1.28 (3H, t), 2.18 (2H, br t), 4.18 (2H, q), 5.74 (1H, d, J = 15 Hz), 6.86 (1H, dt, J = 7 and 15 Hz).

6.1.4.1.4. tert-Butyl Cyclohexylideneacetate (201)

Diisopropylamine (3.6 mL, 25 mmol) was added to *n*-butyllithium (12.5 mL of a 1.5 M solution in hexane) over 2 minutes at 0°. The hexane was removed under reduced pressure, and the residue dissolved in tetrahydrofuran (25 mL).

The solution was cooled to -78° , and *tert*-butyl trimethylsilylacetate (5.5 mL, 25 mmol) added dropwise over 2 minutes. The mixture was stirred for 10 minutes and then cyclohexanone (2.6 mL, 25 mmol) was added. The solution was allowed to come to room temperature before it was quenched by the addition of 3 M hydrochloric acid (25 mL). The product was isolated by extraction with pentane and vacuum distilled to give the ester (4.5 g, 90%); bp 121–123/16 mm Hg.

6.1.5. Cyclohexylidenepropionaldehyde (Use of an α -Silylimine) (232)

6.1.5.1.1. Silylation of Propionaldehyde tert-Butylimine

Propionaldehyde imine (7.23 mL, 63.8 mmol) was added to a stirred solution of lithium diisopropylamide (66.0 mmol) in tetrahydrofuran (100 mL) at 0° under argon. The solution was treated with chlorotrimethylsilane (8.12 mL, 64.0 mmol) with stirring and cooling. The reaction mixture was warmed to 0° over 3.5 hours, poured into water (150 mL), and extracted with diethyl ether. The organic extracts were washed with saturated sodium chloride solution, dried (K_2CO_3), concentrated, and distilled to give the α -silylimine (8.5 g, 73%); bp 175–178°.

6.1.5.1.2. Cyclohexylidenepropionaldehyde

The silylated propionaldehyde imine, prepared as described above (0.493 g, 2.50 mmol), was added to a solution of lithium diisopropylamide (2.60 mmol) in tetrahydrofuran (9 mL) at 0° under argon. The reaction mixture was stirred for 15 minutes, then cooled to -78° and treated with cyclohexanone (0.26 mL, 2.50 mmol). The resultant mixture was warmed to -20° over 2.5 hours, then quenched with water (3 mL). Solid oxalic acid was added to bring the pH to 4.5. The mixture was stirred for 30 minutes, then poured into saturated aqueous sodium chloride solution (10 mL), and extracted with diethyl ether. The extracts were washed with sodium hydrogen carbonate solution, dried (K_2CO_3), concentrated under reduced pressure, and distilled (short path) to give the enal (310 mg, 90%); bp 80–85° (bath)/0.07 mm Hg; IR (CCl_4) 1675 cm⁻¹; ¹H NMR (CCl_4) δ 1.69 (CH_3 and CH_2 protons), 2.37 and 2.64 (V_3 V_4 V_4 V_5 V_5

6.1.5.2. Cinnamonitrile (224)

Trimethylsilylacetonitrile (0.567 g, 5.0 mmol) was added to a solution of lithium diisopropylamide [formed from diisopropylamine (0.516 g, 5.1 mmol) and n-butyllithium (4.6 mL of a 1.1 M solution)] in tetrahydrofuran (5 mL) at -78° . The mixture was stirred for 40 minutes at this temperature. A solution of benzaldehyde (0.529 g, 4.99 mmol) in tetrahydrofuran (5 mL) was added at -78° and the mixture stirred for 1 hour at this temperature and 4 hours at room temperature. The reaction was quenched with aqueous ammonium chloride solution and extracted with dichloromethane (6 × 20 mL). The combined extracts were washed with saturated aqueous sodium chloride solution, dried (MgSO₄), and concentrated under reduced pressure to give the α , β

-unsaturated nitrile (0.499 g, 77%) as a 1:1 mixture of *E* and *Z* isomers after column chromatography.; IR (CCl₄) 2235, 1620 cm⁻¹; ¹H NMR (CCl₄) δ 5.42 (1*H*, d, *J* = 12 Hz), 5.86 (1*H*, d, *J* = 16.5 Hz), 7.10 (1*H*, d, *J* = 12 Hz), 7.37 (1*H*, d *J* = 16.5 Hz), 7.4–7.9 (5*H*, m).

6.1.5.3. 2,3-Dimethyl-1-phenylthiobut-1-ene (157)

n-Butyllithium (7.15 mL of a 1.4 M solution in hexane, 10 mmol) was added to a solution of phenylthiotrimethylsilylmethane (1.96 g, 10 mmol) in tetrahydrofuran (25 mL) at 0°. After 0.5 hour, the carbonyl compound (10 mmol) was added and the mixture allowed to come to room temperature overnight. The mixture was poured into saturated aqueous ammonium chloride solution (50 mL) and extracted with ether (3 × 25 mL). The combined extracts were washed with 2 M sodium hydroxide solution (30 mL) and saturated aqueous sodium chloride solution (30 mL), dried (Na_2SO_4), evaporated under reduced pressure and chromatographed to give the vinyl sulfide (1.31 g, 68%) as an oil; IR (CHCl₃) 1600 cm⁻¹; ¹H NMR (CDCl₃) δ 1.0 (6*H*, 2 × d), 1.75 (3*H*, br s), 2.0–2.5 (1*H*, m), 5.75 and 5.90 (1*H*, 2s, ratio 1:1), 7.15 (5*H*, br s).

6.1.5.4. 4,4-Dimethylcyclohex-2-en-1-ylidenemethyl Phenyl Sulfone (253) n-Butyllithium (1.0 equivalent of a hexane solution) was added to a stirred solution of phenyl trimethylsilylmethyl sulfone (1.0 eq) in 1,2-dimethoxyethane (5 mL mmol⁻¹ sulfone) under argon at -78° . The pale yellow solution was maintained at -78° for 20 minutes while the carbonyl compound (1.0 eq) was added by syringe, either neat or as a solution in 1,2-dimethoxyethane. The reaction mixture was allowed to warm to room temperature immediately, whereupon aqueous ammonium chloride solution was added. The layers were separated, dried, evaporated, and purified by chromatography to give the vinyl sulfone (81%) as a 1:1 mixture of the E and Z isomers; IR (CH_2CI_2) 3044, 2958, 2867, 1619, 1574, 1303, 1145 cm⁻¹; ¹H NMR ($CDCI_3$) δ 1.03 (3H, s), 1.05 (3H, s), 1.50–1.62 (2H, m), 2.39 and 2.90 (2H, m), 5.85 (0.5H, d J = 10 Hz), 5.95–6.10 (2H, m), 7.21 (0.5H, dd, J = 10 and 1 Hz), 7.50–7.65 (3H, m), 7.90–7.95 (2H, m).

6.1.5.5. Diethyl 3-Methyl-1-butenylphosphonate (239)

n-Butyllithium (25 mmol of a 23% solution in hexane) was added to a solution of diethyl trimethylsilylmethylphosphonate (5.6 g, 25 mmol) in tetrahydrofuran (10 mL) and the mixture stirred for 1.5 hours. Isobutyraldehyde (25 mmol) was added and, after a further 2 hours at 25°, saturated aqueous sodium chloride solution (25 mL). The layers were separated and the aqueous phase was extracted with diethyl ether, dried (MgSO₄), and concentrated to give the vinyl phosphonate (92%) as a 1:2.4 mixture of the *E* and *Z* isomers, which were separated by preparative GLPC on a 10-ft 20% Carbowax 20 M-on-firebrick column at 150°. The major isomer eluted first; ¹H NMR (CDCl₃) δ 1.10 (6*H*, d), 1.4 (6*H*, t), 3.32 (1*H*, m), 4.10 (4*H*, q), 5.4 (1*H*, dd, J = 12 and 20 Hz), 6.2 (1*H*, ddd, J = 12, 10, and 52 Hz), followed by the *E* isomer; ¹H NMR 1.10 (6*H*, d),

1.36 (6H, t), 4.10 (4H, q), 5.58 (1H, t, J = 18 and 18 Hz), 6.8 (1H, ddd, J = 18, 7, and 23 Hz).

6.1.5.6. 2-[Methoxy(trimethylsilyl)methyl]-2-adamantanol [Reaction of (Trimethylsilyl)methoxymethyllithium)] (277)

(Methoxymethyl)trimethylsilane (0.66 mL, 4.23 mmol) in tetrahydrofuran (6.0 mL) was cooled to -78° and sec-butyllithium (3.0 mL of a 1.4 M solution in cyclohexane, 4.23 mmol) slowly added by syringe. The mixture was warmed to -25° and then held at this temperature for 0.5 hour. The pale yellow solution was cooled to -35° and adamantanone (0.57 g, 3.8 mmol) added. The mixture was allowed to slowly warm to room temperature over 1.5 hours, when it was quenched with saturated aqueous ammonium chloride solution (30 mL) and extracted with diethyl ether (2 × 30 mL). The ethereal layer was washed with water (2 × 20 mL) and saturated aqueous sodium chloride solution (10 mL), dried (MgSO₄), and evaporated under reduced pressure to give the alcohol (0.91 g, 89%); mp 65–67° (petroleum ether/ethyl acetate); IR (nujol) 3500, 2900, 2850, 1450, 1375, 1320, 1250, 1170, 1050, 990, 930, 910, 870, 840 cm⁻¹; ¹H NMR (CDCl₃) δ 0.1 (9*H*, s), 1.65 (10*H*, br s), 1.7 (4*H*, br s), 2.2 (1*H*, br s), 3.4 (3*H*, s).

6.1.5.7. 2-(3-Phenyl-2-propenylidene)-1,3-dithiane (305)

n-Butyllithium (11.25 mL of a 2.2 M solution in hexane, 25 mmol) was added to a solution of 2-trimethylsilyl-1,3-dithiane (4.80 g, 25 mmol) in tetrahydrofuran (25 mL) and the resultant mixture stirred for 15 minutes at 0°. Cinnamaldehyde (25 mmol) was added and the temperature maintained at 0° for 15 minutes and 25° for 15 minutes. The reaction was quenched with saturated sodium chloride solution (37.5 mL) and extracted with diethyl ether (2 × 25 mL). The extracts were dried (MgSO₄) and evaporated to give the crude product, which separated as yellow crystals from hexane–ether; mp 84°; ¹H NMR (CDCl₃) δ 2.0–2.4 (2*H*, m), 2.8–3.1 (4*H*, m), 6.58 (1*H*, d, J = 15 Hz), 6.63 (1*H*, d, J = 10 Hz), 7.0–7.6 (6*H*, m).

6.1.5.8. tert-Butyl 2-(Tri-n-butylstannyl)-2-hexenoate (287)

A 25-mL, flame-dried flask fitted with a serum-stoppered side arm was cooled in an ice-water bath. n-Butyllithium (2.2 mmol of a solution in hexane) was placed in the flask and diisopropylamine (0.35 mL, 2.5 mmol) was added dropwise. When the addition was complete, the solvent was removed under reduced pressure. The residue was dissolved in tetrahydrofuran (2.5 mL) and HMPA (0.70 mL, 4.0 mmol) was added. The flask was cooled with a dry ice—acetone bath and a solution of tert-butyl α -(tri-n-butylstannyl)- α -(trimethylsilyl)acetate (0.9573 g, 2.0 mmol) in tetrahydrofuran (1.0 mL) was added dropwise. The reaction was stirred for 10 minutes at -78° , and then at -23° for 30 minutes. The solution was cooled to -78° , and butyraldehyde (0.18 mL, 2.0 mmol) was added. The mixture was stirred for a further 10 minutes, then hydrolyzed with saturated aqueous ammonium chloride solution

and extracted with petroleum ether. The product, *tert*-butyl-2-(tri-n-butylstannyl)-2-hexenoate, was purified by TLC on silica eluting with petroleum ether–dichloromethane (1:1) and was obtained as a 46:54 mixture of the E and Z isomers (0.4794 g, 51%); IR (neat) 1690 cm⁻¹; ¹H NMR (CDCl₃) δ 0.7–1.7 (32H, m), 1.5 (9H, s), 2.3 (2H, m) 5.96 and 7.3 (1H, t).

6.1.6. N-6-Methyl-2,4-di-tert-butylsulfinylanilide (227)

6.1.6.1.1. N-Trimethylsilyl-6-methyl-2,4-di-tert-butylaniline n-Butyllithium (20.6 mL of a 1.6 M solution in hexane, 33 mmol) was added gradually to a solution of 6-methyl-2,4-di-*tert*-butylaniline (30 mmol) in tetrahydrofuran (60 mL) at -78° . The mixture was stirred for 1 hour at room temperature, then chlorotrimethylsilane (4.6 mL, 36 mmol) was added at -78° . The reaction mixture ws stirred at room temperature for 15 minutes, the solvent was evaporated, and the residue distilled to give the N-silylamine (78%); bp 85°/0.2 mm Hg; IR (neat) 3440, 1255, 836 cm $^{-1}$; 1 H NMR (CDCl₃) δ 0.21 (9H, s), 1.41 (9H, s), 2.27 (3H, s), 2.90 (1H, s), 6.95 (1H, d), 7.15 (1H, d).

6.1.6.1.2. N-6-Methyl-2,4-di-tert-butylsulfinylanilide

A solution of *n*-butyllithium (13.75 mL of a 1.6 M solution in hexane, 22 mmol) was added to a stirred solution of the *N*-silylamine (20 mmol, prepared as described above) in tetrahydrofuran (50 mL) at 0°. The solution was stirred for 1 hour at room temperature and added to excess sulfur dioxide in tetrahydrofuran (50 mL) at –78°. This mixture was stirred for 1 hour at room temperature. The reaction was quenched by the addition of saturated aqueous ammonium chloride solution (20 mL). The organic layer was separated, dried (MgSO₄), evaporated, and the residue recrystallized from methanol to give the *N*-sulfinylamine (80%); mp 53–55°; IR (KBr) 1271, 1181 cm⁻¹.

6.1.7. Phenylacetaldehyde [Reaction of Chloro(trimethylsilyl)methyllithium, Formation of an α , β -Epoxysilane and Its Opening] (269)

6.1.7.1.1. (E,Z)-3-Phenyl-2-trimethylsilyloxirane sec-Butyllithium as a solution in cyclohexane (1.1-M, 1.05 eq.) was added to a stirred solution of chloromethyl(trimethylsilyl)methane (6.15 mmol) in tetrahydrofuran (8 mL) at -78° under argon. After 5 minutes, N, N, N, \emptyset , N, \emptyset -tetramethylethylenediamine (1.05 eq.) was added and the mixture stirred for 0.5 hour while allowing the temperature to rise to -55° . Benzaldehyde (0.53 g, 4.93 mmol) was added to the pale yellow solution at -55° . The solution was maintained at -50° for 0.5 hour, then warmed to 20° over 3 hours. The mixture was poured into 0.5 M hydrochloric acid (25 mL), extracted with dichloromethane (3 × 30 mL), dried (MgSO₄), and evaporated to give the epoxide as an oil (0.87 g, 95–98% pure, 3.4:1 ratio of Z:E isomers by GLC); IR (neat) 1605, 1595, 1248, 842, 750 cm $^{-1}$; 1 H NMR (CCl₄) δ 0.19 (9H, s), 0.31 (9H, s), 2.48 (1H, d), 2.68 (1H, d), 3.86 (1H, d), 4.40 (1H, d), 7.47 (5H, s).

6.1.7.1.2. Hydrolysis to Phenylacetaldehyde Dimethylacetal

The α , β -epoxysilane (0.20 g, prepared as described above) was stirred with 10% aqueous methanol (5 mL) and boron trifluoride etherate (0.095 mL) at -5° . The mixture was warmed to 20°. After 2 hours, the reaction mixture was poured into 0.5 M hydrochloric acid (20 mL). The mixture was extracted with dichloromethane (3 × 20 mL), dried (MgSO₄), and evaporated to give the acetal (0.14 g, 82%), identical with an authentic sample.

6.1.7.1.3. Hydrolysis to Phenylacetaldehyde

The α , β -epoxysilane (0.19 g, prepared as described above) was stirred with 20% aqueous tetrahydrofuran (2 mL), and 70% perchloric acid (0.01 mL) was added. After 4 hours, the mixture was poured into water (20 mL), extracted with dichloromethane (3 × 20 mL), dried (MgSO₄), and evaporated under reduced pressure at 30° to give the aldehyde (0.14 g, 85%); 2,4-dinitrophenylhydrazone: mp 230–235°.

7. Tabular Survey

The following tables contain examples of the Peterson olefination reaction as defined in the introduction to this chapter. The tables also include the eliminations of β -hydroxysilanes, although the origin of some of these compounds may not have been by a Peterson protocol. A table has been compiled for noncarbonyl-derived electrophiles. Related reactions, such as the homo-Peterson reaction, are not contained in the tabular survey. The literature survey includes articles appearing up to December 1986.

The tables are arranged by substituent in the α -silyl carbanion and appear in the same order as described in the text. Within each table, substances are arranged in order of increasing number of carbon atoms in the α -silyl carbanion, or β -hydroxysilane when applicable, and then by the heteroatom substituent. Only the carbon atoms contained within the carbon chain directly bonded to the silicon atoms are included in the count. With silanes similar in every other regard, the size of the silyl substituent is used to determine the order of appearance. The electrophiles are ordered in a similar manner to the α -silyl carbanions.

The titles of the tables are self-explanatory. All reactions which give rise to conjugated or homo-conjugated carbon—carbon unsaturation are contained in Tables IV—XI. Products that contain conjugation with heteroatom-derived functional groups are contained in the appropriate heteroatom table.

In tables which imply stereochemistry, such as Table III, entries between two columns separated by a comma denote that the stereochemistry is not cited in the literature or a mixture of isomers is used. Isomer ratios of the alkene products are quoted only when noted in the original citation.

In Tables I and II the formation of trimethylsilylmethyllithium is inferred from the chloride, unless specifically stated, as this compound is commercially available.

The reagent column indicates the reagent necessary for the generation of the α -silyl carbanion and/or elimination from the β -hydroxysilane. Aqueous workup is not included. The product column indicates all products with yields in parentheses; a dash denotes that no specific yield is given.

Abbreviations for some reagents are used in the tabular material. Short forms of some groups are also used when that group is not directly involved in the reaction.

Ac

acetyl

BF₃·OEt₂ boron trifluoride etherate

diglyme diethylene glycol dimethyl ether

DME 1,2-dimethoxyethane
DMF *N,N*-dimethylformamide

DMSO dimethyl sulfoxide

Et₂O diethyl ether

HMPA hexamethylphosphoric triamide KDA potassium diisopropylamide LDA lithium diisopropylamide

LDMAN lithium 1-(dimethylamino)naphthalenide

LiC₁₀H₈ lithium naphthalenide

LiTMP lithium 2,2,6,6-tetramethylpiperidide

MCPBA *m*-chloroperoxybenzoic acid

Mes mesityl

MgBr₂·OEt₂ magnesium bromide etherate

py pyridine

rt room temperature
THF tetrahydrofuran
Thp tetrahydropyranyl

TMEDA $N, N, N\phi, N\phi$ -tetramethylethylenediamine

TsOH p-toluenesulfonic acid

Table I. Preparation of Hydrocarbon Alkenes

View PDF

Table II. Formation of β -Hydroxysilanes

View PDF

View PDF IV. Reactions of Silanes Containing Unsaturation without Isola of a β -Hydroxysilane View PDF Table V. Preparation of Unsaturated β -Hydroxysilanes View PDF Table VI. Eliminations from Unsaturated β -Hydroxysilanes View PDF	Table III. Eliminations of β -Hydroxysilanes	
of a β -Hydroxysilane View PDF Table V. Preparation of Unsaturated β -Hydroxysilanes View PDF Table VI. Eliminations from Unsaturated β -Hydroxysilanes	View PDF	
of a β -Hydroxysilane View PDF Table V. Preparation of Unsaturated β -Hydroxysilanes View PDF Table VI. Eliminations from Unsaturated β -Hydroxysilanes		
Table V. Preparation of Unsaturated β -Hydroxysilanes View PDF Table VI. Eliminations from Unsaturated β -Hydroxysilanes	——————————————————————————————————————	out Isola
View PDF Table VI. Eliminations from Unsaturated β -Hydroxysilanes	View PDF	
View PDF Table VI. Eliminations from Unsaturated β -Hydroxysilanes		
Table VI. Eliminations from Unsaturated β -Hydroxysilanes	Table V. Preparation of Unsaturated β -Hydroxysila	nes
	View PDF	
View PDF	Table VI. Eliminations from Unsaturated β -Hydroxys	ilanes
	View PDF	
le VII. Formation of α , β -Unsaturated Carboxylic Acid Derivativ	le VII. Formation of a RI Insaturated Carbovylic Acid	Derivativ

Table VIII. Formation of α , β -Unsaturated Carbonyl Compounds

View PDF

Table IX. Nitrogen-Containing α -Silyl Carbanions
View PDF
Table X. Sulfur-Containing α -Silyl Carbanions
View PDF
Table XI. Selenium-Containing α -Silyl Carbanions
View PDF
Table XII. Preparation of Vinyl Selenides
View PDF
Table XIII. Formation of VinyIsilanes
View PDF

	View PDF	
ole XV. Read	ctions of Oxygen-Containing α -Sil	yl Carbanio
	View PDF	
le XVI. Elim	ination of β -Hydroxysilanes to Gi	ve Vinyl Eth
	View PDF	
e XVII. Othe	er Miscellaneous α -Silyl Carbanior Heteroatom Substituent	ns Containi
e XVII. Othe	Heteroatom Substituent	ns Containi
e XVII. Othe		ns Containi
e XVII. Othe	Heteroatom Substituent	ns Containi
	Heteroatom Substituent View PDF	
	Heteroatom Substituent	
	Heteroatom Substituent View PDF	
	Heteroatom Substituent View PDF ation of Alkenes with Two Heteroa	

View PDF

101

		Silane			Carbonyl	Reaction	Product(s)	
	х	R	R1	R ²	Compound	Conditions	and Yield(s) (%)	Refs.
C ₁	CI	СН3	Н	н	(CH ₃) ₃ SiCH=CHCHO	1. Mg, Et ₂ O 2. TsOH, Et ₂ O	(CH ₃) ₃ SiCH=CHCH=CH ₂ (59)	103
						1. Mg, Et ₂ O 2. H ₂ O 3. NaH, THF, heat	CH ₂ (>50)	92
					"	1. Mg, Et ₂ O	" (100)"	91
						2. AcCl 1. Li, Et ₂ O 2. AcCl	CH ₂ (20)	91
					C ₆ H ₅ CO ₂ C ₂ H ₅	1. Mg, Et ₂ O ^b 2. SiO ₂	$C_6H_5C(=CH_2)CH_2Si(CH_3)_3$ (49)	100
					,,	 Mg, Et₂O H₂O NaH, THF, heat 	" (>50)	92
					.39	1. Mg, Et ₂ O 2. SOCl ₂	" (57)	91
					CH ₃ CO(CH ₂) ₂ - CH=C(CH ₃) ₂	1. Li, Et ₂ O 2. SOCl₂	$CH_2 = C(CH_3)(CH_2)_2CH = C(CH_3)_2$ (53)	91
					C ₆ H ₅ (CH ₂) ₂ CO ₂ C ₂ H ₅	1. Mg, Et ₂ O ^b 2. SiO ₂	$C_8H_5(CH_2)_2C(=CH_2)CH_2Si(CH_3)_3$ (45)	100
					TMSCH ₂ COCH ₃	1. Mg, Et ₂ O 2. 35°, 2 h 3. HCl, CH ₃ OH	(78) COCH ₃	106
					,,	1. Mg, Et ₂ O 2. CsF, DMSO	" (46)	106
					СНО	1. Mg, Et ₂ O 2. TsOH, THF	CH=CH ₂ (90)	121
					СН=СНСНО	1. Mg, Et ₂ O 2. AcOH, H ₂ O, C ₃ H ₁₂	CH=CHCH=CH ₂ (75)	104
					n-C ₆ H ₁₃	1. Mg, Et ₂ O, heat 2. SiO ₂	CO_2CH_3 $OH CH_2Si(CH_3)_3$ (45) $n-C_6H_{\overline{13}}$ CO_2CH_3 $CH_2Si(CH_3)_3$ (45)	124
					$HC = C(CH_2)_2$ - $C = C(CH_2)CHO$	1. Mg, Et ₂ O 2. AcCl, AcOH	CH_2 = $CH(CH_2)_2C$ = $C(CH_2)_2C$ = CH (60)	140
					$HC = C(CH_2)_{3^-}$ $C = C(CH_2)_{2}CHO$	"	CH_2 = $CH(CH_2)_2C$ = $C(CH_2)_3C$ = CH (60)	140
					n-C,H ₁₅ OO	1. Mg, Et ₂ O, heat 2. SiO ₂ , CHCl ₃	$n-C_7H_{\overline{15}} \bigcirc OH CH_2Si(CH_3)_3 (41)$ $= CH_2$	124
						1. Mg, THF 2. SOCl ₂	(60)	107
					X i	1. Mg, Et ₂ O 2. AcCl	CH ₂ (52)	91

102

	Silar	ne		Carbonyl	Reaction	Product(s)	
X	R	R1	R ²	Compound	Conditions	and Yield(s) (%)	Refs.
$Sn(C_4H_9-n)$)3 CH ₃	Н	Н	p-ClC ₆ H ₄ CHO	1. n-C ₄ H ₉ Li, THF, C ₆ H ₁₂	CH_2 = CHC_6H_4Cl-p (72)	167
				CH ₃ O CHO	2. AcOH, H₂O "	CH ₃ O CH=CH ₂ (77)	167
					21.	CH ₂ (46) ^e	167
				n-C ₁ H ₁₅ CHO	 n-C₄H₀Li, THF, C₀H₁₂ 	$CH_z = CHC_1H_{15}-n (61)$	167
				Y C	2. H ₂ SO ₄ , THF 1. n-C ₄ H ₉ Li, THF, C ₄ H ₁₂ 2. AcOH, H ₂ O	CH ₂ (60)	167
				Cyclododecanone	,,	CH ₂ (90) ^c	167
C ₃				$(C_6H_5)_2CO$	"	$CH_2 = C(C_6H_5)_2$ (78)	167
SC ₄ H ₅	CH ₃	СН3	Н	(CH ₃) ₂ CO	1. LiC ₁₀ H ₈ , THF, -78° 2. HCl, H ₂ O	CH ₃ CH=C(CH ₃) ₂ (51)	157
				n-C₃H₁CHO	"	CH ₃ CH=CHC ₃ H ₇ -n (74)	154, 157
				○	**	E:Z ~ 1:1 CHCH ₃ (47)	154, 157
				С"Н,СНО	,,	$CH_{s}CH=CHC_{s}H_{s} $ $E: Z \sim 1:1 $ (75)	154, 157
				C ₆ H ₅ COCH ₃	"	$CH_3CH = C(CH_3)C_6H_5$ (79) $E: Z \sim 1:1$	154, 157
SeCH ₃	C ₂ H ₅	СН3	Н	(C ₆ H ₅) ₂ CO	1. n-C ₄ H ₂ Li, THF 2. Acid or base ^d	CH ₃ CH=C(C ₆ H ₅) ₂ (80) CHCH ₃ (40)	154, 157 165
SC ₆ H ₅	СН3	СН3	СН3	Ċ₄H₅-t n-C₁₀H₂1CHO CℴH₃CH₂COCℴH₅ CℴH₃CHO	"," 1. LiC ₁₀ H ₈ , THF, -78° 2. HCl, H ₂ O	$\dot{C}_{4}H_{5}-t$ $CH_{5}CH=CHC_{10}H_{21}-n$ (45) $CH_{5}CH=C(C_{6}H_{5})CH_{2}C_{6}H_{5}$ (90) $(CH_{3})_{2}C=CHC_{6}H_{5}$ (47)	165 165 157
	BnOCH ₂	Si(CH ₃) ₃		С₀Н₃СНО	1. <i>n</i> -C₄H₃Li, THF, -95°	BnOCH ₂ (56) CHC ₆ H ₅	238
	ا	Br		С,Н,СН=СНСНО	2. KH, THF "	BnOCH ₂ (46) —CHCH—CHC ₆ H ₅	238
C _s SC ₆ H ₅	СН,	n-C ₄ H ₉	н	H ₂ CO	 LiC₁₀H₅, THF, −78° HCl, H₂O 	n-C ₄ H ₉ CH=CH ₂ (58)	157

			Silan			Carbonyl	Reaction	Product(s)	
		х	R	R1	R ²	Compound	Conditions	and Yield(s) (%)	Refs.
						CH₃CHO	"	$n-C_4H_9CH=CHCH_3$ (8 $E:Z \sim 1:1$	2) 154, 157
						(CH ₃) ₂ CO n-C ₃ H ₇ CHO	"	$n-C_4H_9CH=C(CH_3)_2$ (61) $n-C_4H_9CH=CHC_3H_7-n$ (7 $E:Z\sim 1:1$	154, 157 8) 154, 157
						\bigcirc °	"	CHC ₄ H ₉ -n (52)	157
						C ₆ H ₅ CHO	n.	$n-C_4H_9CH=CHC_6H_5$ (8	6) 154, 157
						C ₆ H ₅ COCH ₃	39	$E: Z \sim 1:1$ $n-C_4H_9CH = C(CH_3)C_6H_5$ (76) $E: Z \sim 1:1$	6) 154, 157
_		SC₀H₅	СН3	t-C ₄ H ₉	н	(C ₆ H ₅) ₂ CO (CH ₃) ₂ CO	"	$n-C_4H_9CH=C(C_6H_5)_2$ (74) $t-C_4H_9CH=C(CH_3)_2$ (<20) ^c	154, 157 157
106	C,	30413	CH	1-0419	**	C ₆ H ₅ CHO	,,	t-C ₄ H ₉ CH=CHC ₆ H ₅ (32)	157
	<u> ح</u>	Li	.C₀H₅	<i>n</i> -C ₅ H ₁₁	Н	С₀Н₃СНО	n-C ₄ H ₉ Li, Et ₂ O, CH ₂ =CHSi(C ₆ H ₅) ₃	$n-C_5H_{11}CH = CHC_6H_5$ (5) E:Z = 1:1	0) 91, 92
*						(CH3)2C=CH- (CH2)2COCH3	n	$n\text{-}C_3\text{H}_{11}\text{CH} = \text{C}(\text{CH}_3)(\text{CH}_2)_2$ - $\text{CH} = \text{C}(\text{CH}_3)_2 (34)$ $E: Z = 1:1$	91, 92
		SC₀H₅	СН3	—(CH ₂) ₅		С"Н,СНО	1. LiC ₁₀ H ₈ , THF, −78° 2. HCl, H ₂ O	CHC ₆ H ₅ (38)	157
	C ₇	н	СН3	C ₆ H ₅	н	(CH ₃) ₂ CO	n-C₄H₃Li, TMEDA	$C_6H_5CH=C(CH_3)_2$ (50) CHC_6H_5 (52)	3 3
						C ₆ H ₅ CHO	399		2) 3
						**	n-C₄H₀Li, HMPA	E:Z = 1:1 " (5)	0) 91, 92
				-Si(CH₃)₃		C ₆ H ₅ COCH ₃ (C ₆ H ₅) ₂ CO C ₆ H ₅ COCH ₃	n-C ₄ H ₃ Li, TMEDA n-C ₄ H ₃ Li, THF	E: Z = 2:1 $C_6H_5CH = C(CH_3)C_6H_5$ (—) ^f $C_6H_5CH = C(C_6H_5)_2$ (77) C_6H_5 (10) ^f	91, 92 3 97
				,		(C ₆ H ₅) ₂ CO	(3)	H C ₆ H ₅ (41) ⁸	97
		Li	CH ₃	i-C ₃ H ₇ (CH ₂) ₃	н	n-C ₁₀ H ₂₁ CHO	i-C ₃ H ₇ (CH ₂) ₂ Li, Et ₂ O,	$i-C_3H_7(CH_2)_3CH=CHC_{10}H_{21}-n$ (6)	9) 91
107			\bigcirc	<br Si(CH₃)₃</br 		n-C ₆ H ₁₃ CHO	CH ₂ =CHSi(C ₆ H ₅) ₃ 1. n-C ₄ H ₅ Li, THF, -95°	$E:Z = 1:1$ $CHC_6H_{13}-n$ (96)	238
7			~			С₀н₀сно	2. KH, THF 1. n-C ₄ H ₉ Li, THF, -95° 2. KOC ₄ H ₉ -t, THF	CHC ₆ H ₅ (55)	238
						С,Н,СН=СНСНО	20	CHCH=CHC ₆ H ₅ (45)	238
				Si(CH ₃) ₃ SC ₆ H ₅		С"Н"СНО	 LiC₁₀H₈, THF, −78° HCl, H₂O 	O CH=CHC ₆ H ₅ (24) +	156
								CHCH ₂ C ₆ H ₅ (36)	

	Silane		71,500	Carbonyl	Reaction	Product(s)	
х	R	R1	R ²	Compound	Conditions	and Yield(s) (%)	Refs.
SC₀H₅	CH ₃	C ₆ H ₅	Н	H ₂ CO CH ₃ CHO		$C_6H_5CH=CH_2$ (62) $C_6H_5CH=CHCH_3$ (71) $E:Z \sim 1:1$	157 154, 15
				(CH ₃) ₂ CO n-C ₃ H ₇ CHO	"	$C_6H_5CH=C(CH_3)_2$ (70) $C_6H_5CH=CHC_3H_7-n$ (85)	154, 1: 154, 1:
				O	"	$E: Z = 1:1$ $CHC_6H_5 (41)$	157
				С°Н°СНО	"	$C_bH_sCH=CHC_bH_s$ (76) $E:Z \sim 1:1$	154, 1
				C ₆ H ₅ COCH ₃	***	$C_{2}H_{3}CH = C(CH_{3})C_{2}H_{5}$ (69) $E: Z \sim 1:1$	154, 1
SeCH ₃	CH ₃	n-C ₆ H ₁₃	н	$(C_6H_5)_2CO$ $(C_2H_5)_2CO$	" 1. n-C₄H₀Li, THF, 0° 2. Acid or base ^d	$C_6H_5CH=C(C_6H_5)_2$ (59) $n-C_6H_{13}CH=C(C_2H_5)_2$ (40)	154, 1 165
				\bigcirc °	"	CHC ₆ H ₁₃ -n (40)	165
SeCH ₃	C ₂ H ₅	n-C ₆ H ₁₃	н	n-C ₆ H ₁₃ CHO	"	$n-C_6H_{13}CH=CHC_6H_{13}-n$ (90) $CHC_6H_{13}-n$ (90)	165 165
Si(CH ₃) ₃	СН3	C₅H₅	н	n-C ₆ H ₁₃ CHO t-C ₄ H ₂ CHO	,, NaOCH3, HMPA	$n-C_6H_{13}CH=CHC_6H_{13}-n$ (90) $C_6H_5CH=CHC_4H_9-t$ (26) E:Z=1:5.7	165 166
				C ₄ H ₅ CHO	"	$C_6H_5CH=CHC_6H_5$ (79) " $E:Z=1.32:1$	
				"	LiOC ₄ H ₉ -t, HMPA	" $E:Z = 1.43:1$ (100)	37
				**	KOC ₄ H ₉ -t, HMPA	" $E:Z = 1.30:1$ (100)	37
				: 99	KOC ₄ H ₉ -t, MgI ₂ , HMPA	" $E:Z = 1.85:1$ (56)	38
				39	NaOSi(CH ₃) ₃ , MgI ₂ , HMPA	E:Z = 1.83:1 (50)	37
Li	C₀H₅	C ₆ H ₅ CH ₂	н	С₀Н₀СНО	C₀H₃CH₂Li, Et₂O,	C ₆ H ₅ CH ₂ CH=CHC ₆ H ₅ (40)	91
Li	C ₆ H ₅	<i>i</i> -C₃H₁(CH₂)₄	н	n-C ₁₀ H ₂₁ CHO	CH_2 = $CHSi(C_6H_5)_3$ i - $C_3H_7(CH_2)_3Li$, Et_2O ,	E:Z = 1:1 $i-C_3H_7(CH_2)_4CH$ — $CHC_{10}H_{21}-n$ (50) E:Z = 1:1	91
SC ₆ H ₅	CH ₃	C ₆ H ₅	CH ₃	С₀н₀сно	CH_2 —CHSi(C_6H_5) ₃ 1. LiC ₁₀ H ₈ , THF, -78° 2. HCl, H ₂ O	$C_6H_5C(CH_3)$ =CHC ₆ H ₅ (<20) ^h	157
		TMS		С₀н₃сно	KOC ₄ H ₉ -t, THF	C_6H_5	97
				C ₆ H ₅ COCH ₅	,,	$R = H (\sim 100)$ $R = CH_3 (41)$	97
н	CH ₃	9-Fluorenyl		p-C ₆ H ₃ C ₆ H ₄ COCH ₃	n-C₄H₀Li, THF, TMEDA, 0°	C(CH ₃)C ₆ H ₄ C ₆ H ₅ -p (70)	94

TABLE I. PREPARATION OF HYDROCARBON ALKENES (Continued)

	Silane			Carbonyl	Reaction	Product(s)	
х	R	R1	R ²	Compound	Conditions	and Yield(s) (%)	Refs.
Br	(C ₄ H ₉ -t) ₂	9-Flu	orenyl	C₀H₅CHO	t-C ₄ H ₉ Li, C ₅ H ₁₂	CHC ₆ H ₅ (—)	95

- * The yield was determined by NMR.

 b At least two equivalents of the Grignard reagent are used.

 The yield is based on recovered starting material.

 d No specific conditions are given.

 The yield was determined by GLC.

 The product is obtained as a mixture of isomers.

 The yield is overall from the parent hydrocarbon, which is silylated in situ.

 The yield as determined by GLC and NMR.

TABLE II. FORMATION OF
$$\beta$$
-Hydroxysilanes
$$R_3Si \times X \xrightarrow[R]{1. Base} R_3Si \times R^3$$

$$R^1 \times R^2 \xrightarrow{1. Base} R_3Si \times R^3$$

$$R^1 \times R^2 \times R^4$$

	Silar	e		Carbonyl	Reaction	Product(s)	
х	R	R¹	R ²	Compound	Conditions	and Yield(s) (%)	Ref
Cı							
Br	CH ₃	Н	H	(CH ₃)₂CO	Mg, Et₂O	(CH3)3SiCH2COH(CH3)2 (52)	102
				(E)-CH₃CH=CHCHO	Mg, Et ₂ O, Cu ₂ Br ₂	(E)- $(CH3)3SiCH2CHOHCH=CHCH3 (72)$	120
				C ₆ H ₅ CHO	Mg, Et ₂ O	(CH ₃) ₃ SiCH ₂ CHOHC ₆ H ₅ (14)	102
				(E)-C ₆ H ₅ CH=CHCHO	Mg, Et ₂ O, Cu ₂ Br ₂	(E)- $(CH3)3SiCH2CHOHCH=CHC6H5 (90)$	120
Br	C6H5	H	Н	C ₆ H ₅ CHO	n-C ₄ H ₉ Li, Et ₂ O	(C ₆ H ₅) ₃ SiCH ₂ CHOHC ₆ H ₅ (81)	93
а	CH ₃	н	н	HCO ₂ C ₂ H ₅	Mg, Et ₂ O	[(CH ₃) ₃ SiCH ₂] ₂ CHOH (50)	100
100	3336/			CH ₃ CHO	,, -	(CH ₃) ₃ SiCH ₂ CHOHCH ₃ (—)	2
				(CH ₁),CO	**	(CH ₃) ₃ SiCH ₂ COH(CH ₃) ₂ (—)	3
				СН,=СНСНО	**	(CH ₃) ₃ SiCHOHCH=CH ₂ (65)	118
					1. Mg, Et ₂ O	(CH ₃) ₃ SiCOCH=CH ₂ (56)	61
					2. H ₂ O	1. 10 mg (1. 11 11 11 11 11 11 11 11 11 11 11 11 1	
					3. HRh[P(C ₆ H ₅) ₃] ₄		
				C ₆ H ₅ SeCH(CH ₃)CHO	Li	(CH ₃) ₃ SiCH ₂ CHOHCH(CH ₃)SeC ₆ H ₅ (85)	412
				CH ₃ COCH(OCH ₃)- SC ₆ H ₅	Mg, Et ₂ O, 0°	(CH ₃) ₃ SiCH ₂ C(CH ₃)OHCH(OCH ₃)SC ₆ H ₅ (~90)	108
				CH ₃ COCH=CH- Si(CH ₃) ₃	Mg, Et ₂ O	(CH ₃) ₃ SiCH ₂ C(CH ₃)OHCH=CHSi(CH ₃) ₃ (95)	119
				C ₂ H ₅ COCH=CH- Si(CH ₃) ₃	•	$(CH_3)_3SiCH_2C(C_2H_5)OHCH=CHSi(CH_3)_3$ (65)	119
				t-C4H0CHO	**	(CH ₃) ₃ SiCH ₂ CHOHC ₄ H ₉ -t (73)	4
				i-C ₃ H ₇ CH(SeC ₆ H ₅)CHO	Li	$(CH_3)_3SiCHOHCH(SeC_6H_5)C_3H_{7}i$ (75)	412
				Cyclohexanone	Mg, Et ₂ O	(CH ₃) ₃ SiCH ₂ OH (86)	4

TABLE II. FORMATION OF β-HYDROXYSILANES (Continued)

	Silane			Cohesil	D	Post Color	
х	R	R1	R ²	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
2 2011 0.21.0				i-C ₃ H ₇ COCH=CH- Si(CH ₃) ₃	••	(CH ₃) ₃ SiCH ₂ COH(C ₃ H ₇ -i)CH=CHSi(CH ₃) ₃	119
				n-C ₄ H ₉ CH(SeC ₆ H ₅)- CHO	Li	(85) $(CH_3)_3SiCH_2CHOHCH(SeC_6H_5)C_4H_9-n$ (84)	412
				(C ₂ H ₅) ₂ C(SeC ₆ H ₅)CHO THPO(CH ₂) ₄ COCH- (OCH ₃)SC ₆ H ₅	Mg, Et ₂ O	(CH ₃) ₃ SiCH ₂ CHOHC(SeC ₆ H ₅)(C ₂ H ₅) ₂ (92) (CH ₃) ₃ SiCH ₂ COH[CH(OCH ₃)(SC ₆ H ₅)]- (CH ₂) ₄ OTHP (~90)	412 108
				C ₆ H ₅		C ₆ H ₅ O	454
					CH ₃	OH R OCH ₃	
				$R = O_2CC_6H_5$ C_6H_5CHO	**	$R = O_2CC_6H_5$ (87) (CH ₃) ₃ SiCH ₂ CHOHC ₆ H ₅ (83)	454 3, 4
				n-C ₆ H ₁₃ CHO		(CH3)3SiCH2CHOHC6H13-n (84)	4
				SeC ₆ H ₅	Li	SeC ₆ H ₅ (73) CHOHCH ₂ Si(CH ₃) ₃	412
				C ₆ H ₅ CH ₂ CHO n-C ₇ H ₁₅ CHO	Mg. Et ₂ O	(CH ₃) ₃ SiCHOHCH ₂ C ₆ H ₅ (35) (CH ₃) ₃ SiCH ₂ CHOHC ₇ H ₁₅ -n (—)	4 3
				ŞC,H,	**	SC,H, (~90)	108
				(CH ₂) ₄ OC	Н ₃	(CH ₂) ₄ OCH ₃	
				Ö C ₆ H ₅ CH ₂ CH(SeC ₆ H ₅)- CHO	Li	HÓ ČH ₂ Si(CH ₃) ₃ (CH ₃) ₃ SiCH ₂ CHOHCH(SeC ₆ H ₅)CH ₂ C ₆ H ₅ (68)	412
				C°H²COCH=CH-	Mg, Et ₂ O	(70) $CH_2Si(CH_3)_3$ $(CH_3)_3SiCH_2C(C_6H_5)OHCH=CHSi(CH_3)_3$	117
				Si(CH ₃) ₃ Adamantanone	•	ÇH ₂ Si(CH ₃) ₃ (89)	4
						ОН	
				СНО	•	CHOHCH ₂ Si(CH ₃) ₃ (—)	122
				HC≡C(CH ₂) ₃ -	200	(CH ₃) ₃ SiCH ₂ CHOH(CH ₂)C≡C(CH ₂) ₃ -	140
				C≡C(CH ₂) ₂ CHO	1. Mg, THF 2. AcCl	C≡CH (80) (87)	107
					¥1	CH ₂ Si(CH ₃) ₃	
				٨	1. Mg, THF	O ₂ CCH ₃ (61)	107
					2. NH ₄ Cl, H ₂ O	ОН	
				(C ₆ H ₅) ₂ CO	Mg, Et ₂ O	$CH_2Si(CH_3)_3$ $(CH_3)_3SiCH_2COH(C_6H_5)_2$ (—)	3
				n-C ₁₁ H ₂₃ COCH- (OCH ₃)SC ₆ H ₅	•	(CH ₃) ₃ SiCH ₂ COH(C ₁₁ H ₂₃ -n)CH(OCH ₃)- SC ₆ H ₅ (~90)	108

_		Silane			Carbonyl	Reaction	Product(s)	
_	х	R	R1	R ²	Compound	Conditions	and Yield(s) (%)	Ref
					n-C ₁₀ H ₂₁ CHO	n.	$(CH_2)_3Si$ $CHOHC_{10}H_{21}-n$ (71)	143
	SeCH ₃	CH ₃	{СН(СН	3)]2—	n-C₃H₁CH=CHCHO	,,	(CH ₃) ₃ Si CHOHCH=CHC ₃ H ₇ -n (59)	143
					n-C ₆ H ₁₃ CH(SeCH ₃)CHO	n	(CH ₃) ₃ Si CHOH(SeCH ₃)C ₆ H ₁₃ -n (59)	143
C ₆	SC ₆ H ₅	СН3	—(CH ₂):		C ₆ H ₁₁ CHO	LDMAN, THF, -45°	(CH ₃) ₃ Si CHOHC ₆ H ₁₁ (51)	155
			C₄H₅ CH₃)₃		CH ₃ C(=CH ₂)CHO	,	CHOHC(CH ₃)=CH ₂ (91) Si(CH ₃) ₃	155
C ₇			C ₆ H ₅ i(CH ₃) ₃		£39.	**	CHOHC(CH ₃)=CH ₂ (90) Si(CH ₃) ₃	155
					<i>n</i> -C ₃ H ₁₁ CHO	30.	CHOHC ₅ H ₁₁ - n (92) Si(CH ₃) ₃	155
		SC,I	Н ₅ i(СН ₃) ₃		p-CH ₃ OC ₆ H ₄ CHO	•	CHOHC ₆ H ₄ CH ₃ -p (92) Si(CH ₃) ₃	155
	CH ₃ Se CH ₃ Se	CH ₃ , C ₂ H ₅ ,	1-C ₆ H ₁₃ 1-C ₆ H ₁₃	H H	n-C ₆ H ₁₃ CHO Cyclohexanone	n-C ₄ H ₉ Li, THF, 0°, 1 h "	(CH ₃) ₃ SiCH(C ₆ H ₁₃ -n)CH·OHC ₆ H ₁₃ -n (50) " (30) HO CH(C ₆ H ₁₃ -n)Si(CH ₃) ₃ (30)	165 165 165
		1 X	eCH ₃ i(CH ₃) ₃		n-C₃H₁CH=CHCHO	n-C ₄ H ₉ Li	CHOHCH=CHC ₃ H _{γ} - n (10) Si(CH ₃) ₃	143
		***************************************			n-C ₅ H ₁₁ CHO	•	CHOHC ₅ H ₁₁ - n (40) Si(CH ₃) ₃	143
C ₁₀		(CH ₃) ₃ Si Si	С ₆ н,		C ₆ H ₁₁ CHO	LDMAN, THF, -45°	(CH ₃) ₅ Si CHOHC ₆ H ₁₁ (58)	155
		C ₄ F	ا 			¥	C ₄ H ₉ -t	

			Silane			Reaction	Product(s)	
	R	R ¹	R ²	R³	R ⁴	Conditions	and Yield(s) (%)	Refs.
C ₂						W 7.0 M	110 - 0(011) 011 - 011	70
	CH ₃	$HC \equiv C$ - $(CH_2)_n O$ $n = 1$ $n = 2$	н	н	н	KH, Et ₂ O, 0°	$HC = C(CH_2)_n CH = CH_2$ n = 1 (50) n = 2 (55)	70
	CH ₃	$n = 3$ $HC = C(CH_2)_n$ CO_2 $n = 0$	н	н	н	1. C ₆ H ₁₁ N=COAc C ₆ H ₁₁ NH	$n = 3 (72)$ $HC = C(CH_2)_n CO_2 CH = CH_2$ $n = 0 (56)$	70
		n = 2 $n = 8$				2. (C ₄ H ₉) ₄ NF	n = 2 (69) n = 8 (76)	
C ₃	СН3	н	н	CH ₃	н	450	CH — CHOH ()	2
24	CH ₃	п	n	CH ₃	п	H ₂ SO ₄	CH ₂ =CHCH ₃ (—) ^a	2
	CH ₃ CH ₃	H H	H H	CH ₃ CH ₃	CH ₃ CH(OCH ₃)SC ₆ H ₅	KOC₄H ₉ -t, THF NaH, HMPA, THF	CH ₂ =C(CH ₃) ₂ (35) ^a CH ₂ =C(CH ₃)CH(OCH ₃)SC ₆ H ₅ (~80)	3 108
	CH ₃	H H	H COFe(CO)(C ₅ H ₅)- [P(C ₆ H ₅) ₃]	H H	CH(CH ₃)SeC ₆ H ₅ CH ₃	SnCl ₂ , CH ₂ Cl ₂ NaH, THF	CH ₃ CH=CHCH ₂ SeC ₆ H ₅ (63) [(C ₆ H ₅) ₃ P](C ₅ H ₅)(CO)FeCO- CH=CHCH ₃ (—)	412 51
	TBDM	Н	H	Н	CH2CO2C4H9-t	BF ₃ ·OEt ₂ , CH ₂ Cl ₂	$CH_2 = CHCH_2CO_2C_4H_9-t (64)$	58
C _s	CH ₃	н	н	СН₃	CH ₂ CO ₂ C ₄ H ₉ -t	HCIO ₄ , THF, 0°	CH_2 = $C(CH_3)CH_2CO_2C_4H_9$ - t (65)	60
	CH ₃	н	н	СН3	CH ₂ CON(CH ₃) ₂	122	CH ₂ =C(CH ₃)CH ₂ CON(CH ₃) ₂ (75)	60
C ₆	CH ₃	H H	H H	H H	C ₄ H ₉ -n CH(C ₃ H ₇ -n)NHC ₆ H ₅	KH, THF Acid or base ^c	CH ₂ =CHC ₄ H ₉ - n (95) ^b CH ₂ =CHCH(C ₃ H ₇ - n)NHC ₆ H ₅	72 456
	CH ₃	н	н	н	CH(C ₃ H ₇ -i)SeC ₆ H ₅	SnCl ₂ , CH ₂ Cl ₂	(87) i-C ₃ H ₇ CH=CHCH ₂ SeC ₆ H ₅ (86)	412
C7	CH ₃ CH ₃	н н	H H	H CH(OCH ₃)SC ₆ H ₅	(CH ₂) ₄ CO ₂ H (CH ₂) ₄ OTHP	BF ₃ ·OEt ₂ NaH, HMPA,	CH ₂ =CH(CH ₂) ₄ CO ₂ H (86) CH ₂ =C[(CH ₂) ₄ OTHP]CH(OCH ₃)-	86 108
	CH ₃	(CH ₂) ₃ CO ₂ H	Н	CH ₃	н	THF BF ₃ ·OEt ₂	SC_6H_5 (~80) $CH_3CH=CH(CH_2)_3CO_2H$ (81) $E:Z \sim 100:0$	86
	CH ₃	CH ₃	Н	(CH2)3CO2H	Н	•	" (63) $E:Z \sim 100:0$	86
						KH, THF	" (62) $E:Z = 3.5:96.5$	86
			HO Aco	СО2СН3		TsOH, C ₆ H ₆ , heat	HO CO ₂ CH ₃ (94)	79
			Si(CH ₃)	, 		H ₂ SO ₄ , 1 h	HO (73)	33
	СН3	н	н СС	H H	C(C ₂ H ₅) ₂ SeC ₆ H ₅	SnCl ₂ , CH ₂ Cl ₂	C1 C1 (C ₂ H ₅) ₂ C=CHCH ₂ SeC ₆ H ₅ (20) + (C ₂ H ₅) ₂ C(CHO)CH ₂ Si(CH ₃) ₃	412
	CH ₃	н	н	н	CH(C ₄ H ₉ -n)SeC ₆ H ₅	·w	$n-C_4H_9CH=CHCH_2SeC_6H_5$ (63)	412

					III. ELIMINATIO	NS OF B-HYDRO	XYSILANES (Contin	uea)	-
		R	R ¹	Silane R ²	R³	R ⁴	 Reaction Conditions 	Product(s) and Yield(s) (%)	Refs.
				6	Si(CH ₃) ₃		BF ₃ ·OEt ₂ , CH ₂ Cl ₂		107
				OAc			CF ₃ CO ₂ H, THF, heat	" ←)	107
124				Si(C)	H ₃) ₃ hHC ₃ H ₁₁ -n		KH, THF	CHC ₂ H ₁₁ -n (100)	143
	C ₁₃			(CH ₃) ₃ Si COH(CI	H ₃)C ₉ H ₁₉ -n		<u>.</u>	C(CH ₃)C ₉ H ₁₉ -n (88)	143
				но сн(с,н,)	Si(CH ₂) ₃		"	CHC ₂ H ₅ (85)	155
				C ₄ H ₉ -t	DH .		"	C ₄ H ₉ -t (83)	155
				HO Si(CH ₃)3		KH, diglyme, 90°	(86) $C_4H_{9^-t}$	155
				C ₄ H ₉ -t) ₃ C ₆ H ₁₁ -n		KH, diglyme	CHC ₅ H ₁₁ -n (98)	155
				но осн	I ₃ I ₅ H ₁₁ -n		KH, THF, -78°	OCH ₃ (50) + $n-C_5H_{11} OSi(CH_3)_3 (50)$	36
125				n-C ₃ H ₁₁ OCH	₅ H ₁₁ -n			$n-C_3H_{11}$ $C_3H_{11}-n$ $C_5H_{11}-n$ OCH_3 $(20) + C_5H_{11}-n$ $OSi(CH_3)_3$ (80)	36
				n-C ₃ H ₁₁ Si(CH ₃)	C ₅ H ₁₁ -n		'n	$n-C_5H_{11}$ $C_5H_{11}-n$ OCH ₃ (86) + $n-C_5H_{11}$ OSi(CH ₃) ₃ (14)	36
				I i	1 ₂ OCH ₃ ₃ H ₁₁ - <i>n</i>		in .	$n-C_3H_{11}$ $C_3H_{11}-n$ OCH ₂ OCH ₃ (16) + $n-C_3H_{11}$ OSi(CH ₃) ₃ (84) $n-C_3H_{11}$ $C_3H_{11}-n$	36

-	-			-v	ions of β-Hydrox			
-	R	R1	Silane R ²	R³	R ⁴	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
			n-C ₅ H ₁₁	OCH ₃ C ₅ H ₁₁ -n CH ₃) ₂ C ₆ H ₅		2	$ \begin{array}{cccc} & OCH_{3} & (87) + \\ & C_{5}H_{11}-n & \\ & OSi(CH_{3})_{2}C_{6}H_{5} & (12) \end{array} $	36
	CH ₃	CH ₃ Se	н	<i>n</i> -С ₁₀ Н ₂₁ Н	H n-C ₁₀ H ₂₁	KOC ₄ H ₉ -t, THF	$n-C_3H_{11}$ $C_5H_{11}-n$ $C_5H_{11}-n$ $E:Z \sim 0:100$ $E:Z \sim 100:0$ (89) $C_5H_{11}-n$ (89)	257 257
Cl4	СН₃	н	H (CH ₃) ₃ Si CH	С ₆ Н ₅ ОНС ₁₀ Н ₂₁ -п	C ₆ H ₅	KH, THF NaH, THF 1. SOCl _{2 + -} 2. (C ₄ H ₉) ₄ NF	CH ₂ =C(C ₆ H ₅) ₂ (86) " (67) ^g CHC ₁₀ H ₂₁ -n (46)	3 3 143
			(CH ₃) ₃ Si CHOF	HC ₆ H ₄ OCH ₃ -p		KH, THF	" (0) CHC ₆ H ₄ OCH ₃ -p (95) ^A	143 155
	CH ₃	н	н	n-C ₁₁ H ₂₃	CH(OCH ₃)SC ₆ H ₅	NaH, HMPA, THF	CH ₂ =C(C ₁₁ H ₂₃ -n)CH(OCH ₃)S- C ₄ H ₆ (~80)	108
	TBDM	n-C ₆ H ₁₃	н	CH₂COC₄H9-t	н	BF ₃ ·OEt ₂ , CH ₂ Cl ₂	$n-C_6H_{13}CH = CHCH_2COC_4H_9-t$ $E:Z \sim 100:0$ (68)	58
	твом	n-C ₆ H ₁₃	n	Сн₂снОн	C ₄ H ₉ -1		C_4H_{g-t} $E:Z \sim 100:0$ (—)	58
						KH, THF	" E:Z ~ 0:100	58
C ₁₅			HO C _a H ₅	H Si(CH ₃) ₂ C ₆ H ₅		кн	HO (97)	458'
						AcOH, H₂O	(40)	116
			(CH ₃) ₃ SiCH ₂ HO			HCIO ₄ , H ₂ O, THF	(90)	112
C ₁₇			(CH ₃) ₃ Si	осн,		BF ₃ ·OEt ₂ , CH ₂ Cl ₂ , 0°	CH ₃ CH H O (>86) ^f	83
			(CH ₂) ₃ Si	ОН		кн, тнғ	ℓ-C ₄ H ₉ (80)	155
	C ₁₅	CH ₃ CH ₃ CH ₃ CH ₃ TBDM TBDM TBDM	CH ₃ CH ₃ Se CH ₃ CH ₅ Se C ₁₄ CH ₃ H TBDM n-C ₆ H ₁₃ TBDM n-C ₆ H ₁₃	CH ₃ CH ₃ Se H CH ₃ CH ₃ Se H CH ₄ CH ₅ Se H CH ₅ H (CH ₃) ₃ Si CHO (CH ₃)	R R ¹ R ² R ³ HO OCH ₃ CH ₃ CH ₃ Se H n-C ₁₀ H ₂₁ CH ₃ CH ₃ Se H H CH ₄ CH ₅ CH ₅ Se H H CH ₅ (CH ₃),Si CHOHC ₁₀ H ₂₁ -n (CH ₃),Si CHOHC ₁₀ H ₂ -n (CH ₃),Si CHOHC ₁₀ H	R R¹ R² R¹ R¹ R¹ HO OCH, n-C,H₁, C,H₁, nt Si(CH,),C,H₂, CH, CH,Se H n-C,9H₁ H CH, CH,Se H H n-C,9H₂ (CH,),Si CHOHC,H,OCH,pp (CH,),Si CHOHC,H,OCH,pp (CH,),Si CHOHC,H,OCH,pp (CH,),Si CHOHC,H,OCH,pp CH, H H n-C,H-C,CH,pt TBDM n-C,H₁ H CH,COC,Hpt TBDM n-C,H₁ H CH,CHOH C,Hpt CIS CIS (CH,),Si CH,Si(CH,),C,H₂ HO H OH CH,CH,Si(CH,),C,H₂ (CH,),Si CH,Si(CH,),C,H₂ (CH,),Si CH,Si(CH,),C,H₂ (CH,),Si CH,Si(CH,),C,H₂ (CH,),Si CH,Si C	Reaction Conditions HO OCH ₃ R-C ₂ H ₁₁ R-C ₂ H ₁₁ R-C ₂ H ₁₁ R-C ₂ H ₁₁ R-C ₃ H ₁₁ R-C ₄ H ₁₂ R-C ₄ H ₁₁ R-C ₄ H ₁₂ R-C ₄ H ₁₂ R-C ₄ H ₁₃	R R' R' R' R' Reaction Product(s) (%) 20 20 20 20 20 20 20 2

TABLE III. ELIMINATIONS OF β-HYDROXYSILANES (Continued)

		Silane			D Sales Con	n-1-//		
R	R1	R ²	R³	R ⁴	— Reaction Conditions	Product(s) and Yield(s) (%))	Refs.
C ₁₉								
	((CH ₃) ₃ SiCH ₂ HO			HClO ₄ , THF		(100)	111
		НО						
						o. 1/1/2		
		~ <	\sim					
						/ %		

- ^a The alkene is isolated as the dibromide.

- The alkene is isolated as the dibromide.
 The yield is determined by VPC analysis.
 No specific conditions are given.
 The product is isolated as polystyrene.
 The yield is determined by GLC.
 The exact yield and isomer distribution depend on the method used for the preparation of the β-hydroxysilane.
 The yield is determined by NMR and GLC.
 The product is obtained as a mixture of isomers.
 For closely related eliminations see references 459 and 460.

	Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
		700-1-200-200-200-200-200-200-200-200-200			
	$(C_6H_5)_3SiCBr$ = CH_2	C₀H₃CHO	1. n-C₄H ₉ Li 2. SOCl ₂	$C_6H_5CH=C=CH_2$ (59)	171
			 (C₂H₅)₄NF, DMSO 		
		n-C ₁₀ H ₂₁ CHO	23	$n-C_{10}H_{21}CH=C=CH_2$ (44)	171
		C₀H₀CH=CHCHO	"	$C_6H_5CH=CHCH=C=CH_2$ (35)	171
		$(C_6H_5)_2CO$	22	$(C_6H_5)_2C=C=CH_2$ (45)	171
3					
	(CH ₃) ₃ SiCH ₂ CH=CH ₂	△ 0	1. t-C4H9Li, HMPA, 0°	CHCH=CH, (49)	176
		ſŤ	2. MgBr ₂	, ,	
			3. Carbonyl compound		
			4. SOCl ₂	•	
		C₀H₀CHO	"	$C_6H_5CH=CHCH=CH_2$ (50)	176
		C ₆ H ₁₁ CHO	 t-C₄H₀Li, HMPA, 0° 	$C_6H_{11}CH=CHCH=CH_2$ (42)	176
			2. MgBr ₂		
			3. Carbonyl compound		
		CHCOCH	4. AcCl	CH (CH)C CHCH CH (42)	176
		C ₆ H ₅ COCH ₃	 t-C₄H₉Li, HMPA, 0° MgBr₂ 	$C_6H_5(CH_3)C=CHCH=CH_2$ (43)	170
			3. Carbonyl compound		
			4. SOCl ₂		
		F.	s-C ₄ H ₉ Li, THF	1	174
		△ △	tura su comercia de la Calendaria de la Calendaria del Calendaria del Calendaria del Calendaria del Calendaria	(5)	
		(Y '0		(Y W (0)	

TABLE IV. REACTIONS OF SILANES CONTAINING UNSATURATION WITHOUT ISOLATION OF A β -Hydroxysilane (Continued)

Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)		
	n-C ₁₀ H ₂₁ CHO	 t-C₄H₀Li, HMPA, 0° MgBr₂ Carbonyl compound SOCl₂ 	$n-C_{10}H_{21}CH=CHCH=CH_2$ (54)		1
(CH ₃) ₃ SiCH=CHCH ₂ Si(CH ₃) ₃	HCHO n-C₃H₁CHO	s-C ₄ H ₉ Li, THF, -78° or t-C ₄ H ₉ Li, THF, HMPA	CH ₂ =CHCH=CHSi(CH ₃) ₃ (10) n-C ₃ H ₇ CH=CHCH=CHSi(CH ₃) ₃ $1E$, $3E$: $1E$, $3Z$ = 60 : 40^o	(34)	2
	C ₆ H ₅ CHO	"	$C_6H_5CH=CHCH=CHSi(CH_3)_3$ 1E, 3E:1E, 3Z:1Z, 3E = 77:20:3°	(77)	2
	n-C ₈ H ₁₇ CHO	**	$n-C_8H_{17}CH=CHCH=CHSi(CH_3)_3$ 1E, 3E:1E, 3Z:1Z, 3E = 73:24:3 ^a	(27)	2
$(CH_3)_3SiCH = CHCH_2Si(C_6H_5)_3$ $(CH_3)_3SiC = CCH_2Si(CH_3)_3$	(C ₂ H ₅) ₂ CO	C ₄ H ₉ Li, Et ₂ O, TMEDA n-C ₄ H ₉ Li	$(C_6H_5)_3$ SiCH=CHCH= $C(C_6H_5)_2$ (>95) CHC=CSi(CH ₃) ₃ (83))	8
	"	 n-C₄H₂Li MgBr₂ 	" (88)		8
	n-C ₅ H ₁₁ CHO	2. MgB1 ₂	n-C ₃ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:7^b$	(75)	8
	,,	n-C₄H ₉ Li	$E:Z=1:3^{b}$	(77)	8
	С₀Н₃СНО	,,	C_bH_3CH = CHC = $CSi(CH_3)_3$ $E:Z = 1:1^b$	(53)	8
	:22.	1. n-C ₄ H ₉ Li	$E: Z = 1:3^b$	(76)	8
	C ₆ H ₁₁ CHO	2. MgBr ₂	$C_bH_{11}CH$ =CHC=CSi(CH ₃) ₃ $E:Z=1:20^b$	(84)	8
	,,	n-C ₄ H ₉ Li	$E: Z = 1:8^b$	(69)	8
	С,Н,СН=СНСНО	1. <i>n</i> -C₄H₀Li 2. MgBr₂	C_bH_3CH — $CHCH$ — CHC — $CSi(CH_3)_3$ $E: Z = 1:2^b$	(88)	8
$(CH_3)_3SiC = CCH_2Si(C_2H_5)_3$	Cyclohexanone	"	CHC≡CSi(CH ₃) ₃ (93)		8
	n-C ₅ H ₁₁ CHO	37	n-C ₅ H ₁₁ CH=CHC=CSi(CH ₃) ₃	(89)	8
	,,	n-C₄H₀Li	$E:Z=1:31^b$		
	Unt			(78)	8
	С₀Н₀СНО	,,	$E: Z = 1:6^{b}$ $C_{6}H_{5}CH = CHC = CSi(CH_{5})_{5}$ $F: Z = 1:1^{b}$	(78) (63)	
		" 1. n-C₄H ₉ Li	$C_6H_5CH=CHC=CSi(CH_3)_3$ $E:Z=1:1^b$		8
	С₄Н₃СНО	"	$C_6H_5CH=CHC=CSi(CH_3)_3$ $E:Z=1:1^b$ $E:Z=2:1^b$ $C_6H_{11}CH=CHC=CSi(CH_3)_3$	(63)	8
	C₀H₃CHO "	" 1. <i>n</i> -C ₄ H ₉ Li 2. MgBr ₂	$C_6H_5CH=CHC=CSi(CH_3)_3$ $E:Z=1:1^b$ $E:Z=2:1^b$ $C_6H_{11}CH=CHC=CSi(CH_3)_3$ $E:Z=1:23^b$	(63) (78)	8
	C₀H₃CHO " C₀H₁ıCHO	" 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li 1. n-C ₄ H ₉ Li	C ₆ H ₃ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:1^b$ $E:Z = 2:1^b$ C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:23^b$ $E:Z = 1:10^b$ n-C ₃ H ₁₁ CH=CHC=CSi(CH ₃) ₃	(63) (78) (96)	8 8
(CH3)3SiC≡CCH2Si(CH3)2- C4H9-ℓ	C ₆ H ₅ CHO " C ₆ H ₁₁ CHO	" 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li	C ₆ H ₅ CH=CHC=CSi(CH ₃) ₃ $E: Z = 1:1^b$ " $E: Z = 2:1^b$ C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E: Z = 1:23^b$ " $E: Z = 1:10^b$ n-C ₃ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E: Z < 1:50^b$ C ₆ H ₅ CH=CHC=CSi(CH ₃) ₃	(63) (78) (96) (88)	8 8 8 8
	C ₆ H ₃ CHO " C ₆ H ₁₁ CHO " n-C ₃ H ₁₁ CHO	" 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li 1. n-C ₄ H ₉ Li 2. MgBr ₂	C ₆ H ₃ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:1^b$ " $E:Z = 2:1^b$ C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:23^b$ " $E:Z = 1:10^b$ n-C ₃ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z < 1:50^b$ C ₆ H ₃ CH=CHC=CSi(CH ₃) ₃ E:Z = 1:1 C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃	(63) (78) (96) (88) (65)	8 8 8 8 8
	C ₆ H ₅ CHO " C ₆ H ₁₁ CHO " n-C ₅ H ₁₁ CHO C ₆ H ₅ CHO	" 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li 1. n-C ₄ H ₉ Li 2. MgBr ₂ "	C ₆ H ₃ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:1^b$ " $E:Z = 2:1^b$ C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:23^b$ " $E:Z = 1:10^b$ n-C ₃ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z < 1:50^b$ C ₆ H ₃ CH=CHC=CSi(CH ₃) ₃ E:Z = 1:1 C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:12^b$	(63) (78) (96) (88) (65) (55)	8 8 8 8 8 8
	C ₆ H ₃ CHO " C ₆ H ₁₁ CHO " n-C ₅ H ₁₁ CHO C ₆ H ₅ CHO C ₆ H ₁₁ CHO	" 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li 1. n-C ₄ H ₉ Li	C ₆ H ₃ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:1^b$ " $E:Z = 2:1^b$ C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:23^b$ " $E:Z = 1:10^b$ n-C ₃ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z < 1:50^b$ C ₆ H ₃ CH=CHC=CSi(CH ₃) ₃ E:Z = 1:1 C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:12^b$ " $E:Z = 1:30^b$ C ₆ H ₃ CH=CHCH=CHC=CSi(CH ₃) ₃	(63) (78) (96) (88) (65) (55)	8 8 8 8 8 8 8
C ₄ H ₉ -t	C ₆ H ₃ CHO " C ₆ H ₁₁ CHO " n-C ₅ H ₁₁ CHO C ₆ H ₅ CHO C ₆ H ₁₁ CHO "	" 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li	C ₆ H ₃ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:1^b$ " $E:Z = 2:1^b$ C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:23^b$ " $E:Z = 1:10^b$ n -C ₃ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z < 1:50^b$ C ₆ H ₅ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:1$ C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:12^b$ " $E:Z = 1:30^b$ C ₆ H ₃ CH=CHCH=CHC=CSi(CH ₃) ₃ $E:Z = 1:7$ t -C ₄ H ₉ CH=CHC=CSi(C ₃ H ₇ - t) ₃	(63) (78) (96) (88) (65) (55) (55) (75)	8 8 8 8 8 8
C ₄ H ₉ -t	C ₆ H ₃ CHO " C ₆ H ₁₁ CHO " n-C ₅ H ₁₁ CHO C ₆ H ₅ CHO C ₆ H ₁₁ CHO " C ₆ H ₅ CH=CHCHO	" 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li 1. n-C ₄ H ₉ Li 2. MgBr ₂ n-C ₄ H ₉ Li 1. n-C ₄ H ₉ Li	C ₆ H ₃ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:1^b$ " $E:Z = 2:1^b$ C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:23^b$ " $E:Z = 1:10^b$ n -C ₃ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z < 1:50^b$ C ₆ H ₅ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:1$ C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:12^b$ " $E:Z = 1:30^b$ C ₆ H ₃ CH=CHCH=CHC=CSi(CH ₃) ₃ $E:Z = 1:7$ t -C ₄ H ₉ CH=CHC=CSi(C ₃ H ₇ - t) ₃ $E:Z = 1:20$ "	(63) (78) (96) (88) (65) (55) (55) (75) (90)	8 8 8 8 8 8 8 8
$(CH_3)_3SiC = CCH_2Si(CH_3)_2 - C_4H_9 - t$ $(i-C_3H_7)_3SiC = CCH_2Si(C_3H_7 - i)_3$	C ₆ H ₃ CHO " C ₆ H ₁₁ CHO " n-C ₅ H ₁₁ CHO C ₆ H ₅ CHO C ₆ H ₁₁ CHO " C ₆ H ₅ CH=CHCHO t-C ₄ H ₆ CHO	" 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li 1. n-C ₄ H ₉ Li 2. MgBr ₂ " n-C ₄ H ₉ Li 1. n-C ₄ H ₉ Li 2. MgBr ₂ n-C ₄ H ₉ Li 2. MgBr ₂ n-C ₄ H ₉ Li 3. MgBr ₂ n-C ₄ H ₉ Li 3. MgBr ₂ n-C ₄ H ₉ Li 4. THF, -20°	C ₆ H ₃ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:1^b$ " $E:Z = 2:1^b$ C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:23^b$ " $E:Z = 1:10^b$ n -C ₃ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z < 1:50^b$ C ₆ H ₅ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:1$ C ₆ H ₁₁ CH=CHC=CSi(CH ₃) ₃ $E:Z = 1:12^b$ " $E:Z = 1:30^b$ C ₆ H ₃ CH=CHCH=CHC=CSi(CH ₃) ₃ $E:Z = 1:7$ t -C ₄ H ₉ CH=CHC=CSi(C ₃ H ₇ - t) ₃ $E:Z = 1:2$	(63) (78) (96) (88) (65) (55) (55) (75) (90) (79)	8: 8: 8: 8: 8: 8: 8: 8: 8: 8: 1: 1: 1:

Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	C ₆ H ₁₃ CHO	n-C₄H ₉ Li, THF, −20°	$C_9H_{13}CH = CHC = CSi(C_9H_7i)_3$ (71) E: Z > 1:20	179
	33	1. n-C₄H₀Li, THF, -20°	" (60–65)	179
	С₀Н₀СНО	2. HMPA, -78°	E: Z = 20-10:1 $C_6H_5CH = CHC = CSi(C_9H_{ri})_3$ (60-65)	179
	p-CH₃OC₀H₄CHO	"	E: Z = 9:1 $p\text{-CH}_3\text{OC}_6\text{H}_4\text{CH} = \text{CHC} = \text{CSi}(\text{C}_3\text{H}_7\text{-}i)_3$ (60-65) E: Z = 4.5:1	179
(CH ₃) ₃ Si(CH=CH) ₂ CH ₂ -	(i-C ₃ H ₇) ₂ CO	n-C₄H ₉ Li, THF, −70°	$(CH_3)_3Si(CH=CH)_2CH=C(C_3H_7i)_2$ (53) ^a	177
Si(CH ₃) ₃ Si Si(CH ₃) ₃	СН,СНО	22.	(CH ₃) ₃ Si (90)	177
	i-C₃H₁CHO	"	$(CH_3)_3Si$ \longrightarrow $CHCH_3$ (82)	177
	(CH ₃) ₂ CO	,,	$(CH_3)_3Si$ $=CHC_3H_7-i$ (83)	177
	(C ₂ H ₅) ₂ CO	n	$(CH_3)_3Si$ $=C(CH_3)_2$ $(CH_3)_3Si$ $=C(CH_3)_2$	177
	Cyclohexanone	3	$(CH_3)_3Si$ $C(C_2H_3)_2$ $(CH_3)_3Si$ $(CH_3)_3Si$ $(CH_3)_3Si$	177
Si(CH ₃) ₃	p-(CH₃)₂NC₀H₄CHO	<i>n</i> -C₄H₃Li, <i>t</i> -C₄H₃OK, THF, <20°	p-(CH ₃) ₂ NC ₆ H ₄ H (79)	298
C ₆ H ₅ S C ₆ H ₅	CHO CHO	33	C ₆ H ₅ C ₆ H ₅	298
	CH ₃ CHO C ₆ H ₅ O C ₆ H ₅	"	$C_{6}H_{5}$ S $C_{6}H_{5}$ $X = O$ (61) $X = S$ (44) $C_{6}H_{5}$ O $C_{6}H_{5}$ (58)	298 298

Refs.

178

180

180

180

180

180

C₆H₅

(38)

TABLE IV. REACTIONS OF SILANES CONTAINING UNSATURATION WITHOUT ISOLATION OF A β-HYDROXYSILANE (Continued)

Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	(p-ClC₀H₄)₂CO	150	p-CIC ₆ H ₄ C ₆ H ₄ CI-p (58)	180
	[p-(CH ₃) ₂ NC ₆ H ₄] ₂ CO	"	C ₆ H ₅ O C ₆ H ₅ p-(CH ₃)NC ₆ H ₄ C ₆ H ₄ N(CH ₃) ₂ -p (46) C C C C C C C	180
	CHO CHO	"	C ₆ H ₅ O C ₆ H ₅ (41)	180

[&]quot; All double bonds have the E configuration. " The yield is determined by GC analysis.

Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
2				
(CH ₃) ₃ SiCBr=CH ₂	Cyclopropanone	t-C₄H ₉ Li (2 eq), THF, -78°	$CH_2 = C[Si(CH_3)_3]COH(CH_3)_2$ (60)	170
	C ₆ H ₅ CHO	**	$CH_2 = C[Si(CH_3)_3]CHOHC_6H_5$ (64)	134, 170
	(C ₆ H ₅)₂CO	**	CH2=C[Si(CH3)3]COH(C6H5)2 (69)	170
$(C_6H_5)_3SiCBr=CH_2$	C ₆ H ₅ CHO	C ₄ H ₉ Li	$CH_2 = C[Si(C_6H_5)_3]CHOHC_6H_5$ (—) ^a	171
	C ₆ H ₅ CH=CHCHO	17	CH ₂ =C[Si(C ₆ H ₅) ₃]CHOHCH=CHC ₆ H ₅ (—) ^a	171
	n-C ₁₀ H ₂₁ CHO	"	$CH_2 = C[Si(C_6H_5)_3]CHOHC_{10}H_{21}-n (-)^a$	171
	$(C_6H_5)_2CO$	***	$CH_2 = C[Si(C_6H_5)_3]COH(C_6H_5)_2 (-)^a$	171
3				
(CH ₃) ₃ SiCH ₂ CH=CH ₂	C ₆ H ₅ CHO	1. s-C₄H₀Li 2. B(OCH₃)₃	HO (89)	282
		 NH₄Cl, pinacol N(CH₂CH₂OH)₃ 	Si(CH ₃) ₃	
	n-C ₇ H ₁₅ CHO	,,	HQ (78)	282
			n-C ₂ H ₁₅	
	. 0/011) 0110	3(4)	Śi(CH ₃) ₃	202
	AcO(CH ₂) ₈ CHO	1137	HO (92)	282
			AcO(CH ₂) ₈	
(CH ₃) ₃ Si	C ₂ H ₃ CHO	1. n-C₄H₀Li	Ši(CH ₃) ₃ HO	80, 81
	Children	2. HClb	T .	00,01
$Ti(C_5H_5)_2$		3. O ₂	R	
			$Si(CH_3)_3$ $R = C_2H_3$ (86)	
	i-C ₃ H ₇ CHO	,,	$R = C_2H_3$ (88) $R = i - C_3H_7$ (88)	80

138

TABLE V. Preparation of Unsaturated β -Hydroxysilanes (Continued)

Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)	Ref
	t-C ₄ H ₉ CHO	**	$R = t - C_4 H_9$ (98)	80
	Br(CH ₂) ₄ CHO	"	$R = Br(CH_2)_4 (92)$	
	C ₆ H ₅ CHO	**	$R = C_6 H_5 (95)$	80 80
$(C_6H_5)_3SiCH_2CH=CH_2$	$(C_6H_5)_2CO$	n-C ₄ H ₉ Li, TMEDA, Et ₂ O	$(C_6H_5)_3$ SiCH=CHCH ₂ COH $(C_6H_5)_2$ (>95)	173
(CH ₃) ₃ SiCH=CHCH ₂ Si(CH ₃) ₃	n-C ₃ H ₇ CHO	1. n-C ₄ H ₉ Li, THF, -76°	HŌ	28
	77 mar 0.♥ 30 € mg 2.55 €.00	2. MgBr ₂	R Si(CH ₃) ₃	
			$R = n - C_3 H_7$ (74)	
	"	 n-C₄H₉Li, THF, −76° B(OCH₃)₃ 	" (52)	28
	C ₆ H ₅ CHO	,,	$R = C_6 H_5 (50)$	28
	"	 n-C₄H₉Li, THF, −76° MgBr₂ 	" (80)	28 28
	n-C ₈ H ₁₇ CHO	,,	$R = n - C_8 H_{17}$ (80)	28
	,	 n-C₄H₉Li, THF, −76° B(OCH₃)₃ 	" (50)	28

No specific yield is given, but it is in the range 50-80%.
The first step is condensation of the organometallic species with the carbonyl compound.

TABLE VI. Eliminations from Unsaturated β -Hydroxysilanes

Silane	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
s			
(CH ₃) ₃ SiCH ₂ CHOHCH=CHCH ₃ (CH ₃) ₃ SiCH ₂ COH(CH ₃)CH=CHSi(CH ₃) ₃	CH ₃ SO ₂ Cl, py, 70° NaOAc, AcOH	CH_z = $CHCH$ = $CHCH_3$ (—) CH_z = $C(CH_3)CH$ = $CHSi(CH_3)_3$ (70)	120 119
6		Statement Providence and serior Account Section Sectio	
HO C ₂ H ₃	KH, THF	C ₂ H ₅ CH=CHCH=CH ₂ (—) ^e	80, 81
Si(CH ₃) ₃	H ₂ SO ₄ , THF	" (—)	80, 81
(CH ₃) ₃ SiCH ₂ COH(C ₂ H ₅)CH=CHSi(CH ₃) ₃ Si(CH ₆) ₃	NaOAc, AcOH KH, THF	$CH_{2} = C(C_{2}H_{3})CH = CHSi(CH_{3})_{3} $ $CH_{2} = CHCH = CHC = CSi(CH_{3})_{3} $ $3Z, 5E:3E, 5E < 5:95 $ (54)	119 85
HO C Si(CH ₃) ₃	BF ₃ ·OEt ₂	" 3Z, 5E:3E, 5E < 95:5	85
7			
R Si(CH ₃) ₃	KH, THF	$n-C_3H_7CH$ =CHCH=CHSi(CH ₃) ₃ (94) 1E, 3E:1E, 3Z:1Z, 3Z = 2:63:35 or <1:90:9°	28
$R = n-C_3H_7$	H₂SO₄, THF	" (94)	28
$R = i - C_1 H_2$	KH, THF	1E, $3E:1E$, $3Z:1Z$, $3Z = 68:3:29$ or $92:<1:7^c$ i-C ₃ H ₇ CH=CHCH=CH ₂ (—) ^e	80
	H₂SO₄, THF	" (—) ^b	80
$(CH_3)_3SiCH_2COH(C_3H-i)CH=CHSi(CH_3)_3$	NaOAc, AcOH	CH2=C(C3H7-i)CH=CHSi(CH3)3 (65)	119

TABLE VI. Eliminations from Unsaturated β-Hydroxysilanes (Continued)

Silane	Reaction Conditions	Product(s) and Yield(s) (%)	Ref
$R = AcO(CH_2)_8$	KH, THF	AcO(CH2)8CH=CHCH=CH2 (E:Z=3:97	94) 282
	H ₂ SO ₄ , THF		88) 282
$C_6H_5(CH_2)_2CHOHCH=CHCH_2Si(CH_3)_3$	KH, THF	$C_6H_5(CH_2)_2CH=CHCH=CH_2$ (74)	361
(CH ₃) ₃ Si	1. SOCl ₂	C ₆ H ₁₁ (72)	155
OH C _e H ₁₁	2. (C ₄ H ₉) ₄ NF		
n-C ₀ H ₁₉ CH ₂ CH(CH ₃)CHOHCH=CHCH ₂ Si(CH ₃) ₃	KH, THF	n-C ₃ H ₁₉ CH ₂ CH(CH ₃)CH=CHCH=CH ₂ (84)	361
Si(CH ₃) ₃	SnCl ₄ , CH ₂ Cl ₂		-
n = 7		n = 7 (78)	361
C ₁₇	,,		
n = 8		n = 8 (73)	361

^e The Z isomer is the major product.

^b The E isomer is the major product.

^c The isomer distribution of the products is dependent on the method used for the preparation of the β-hydroxysilane. The first ratio quoted is for the MgBr₂ method of preparation, while the second distribution is for the B(OCH₃)₃ method: see Table V.

TABLE VII. Formation of α,β -Unsaturated Carboxylic Acid Derivatives

									_
Silane					Carbonyl	Reaction	Product(s)		
	x	R	R1	R ²	Compound	Conditions	and Yield(s) (%)		Refs
2									
	N	CH ₃	н	$(CH_3)_2$	CH₃CHO	LDA, 0°	CH ₃ CH=CHCON(CH ₃) ₂ (10) ^a		215
					C ₂ H ₅ CHO	**	$C_2H_5CH=CHCON(CH_3)_2$ (15)*		215
					(CH ₃) ₂ CO	**	(CH3)2C=CHCON(CH3)2 (82)		215
					O°.	,	CHCON(CH ₃) ₂ (82)		215
					C ₆ H ₅ CHO	200	$C_6H_5CH=CHCON(CH_3)_2$ (85) ^a		215
					C6H5CH=CHCHO	**	C6H5CH=CHCH=CHCON(CH3)2	(89)	215
	0	CH ₃	Н	Н	\bigcirc	LDA (2 eq), -78°	CO ₂ H (84)		212
					n-C ₅ H ₁₁ CHO	•	$n-C_5H_{11}CH = CHCO_2H$ E: Z = 3:2	(90)	212
					O°		CO ₂ H (83)		212
					C ₆ H ₅ CHO	SM2	C_6H_5CH — $CHCO_2H$ E:Z = 1:1	(88)	212
	0	CH ₃	Н	CH ₃	(CH ₃ O) ₂ CHCOCH ₃	LDA, -78°	(CH3O)2CHCH=C(CH3)CO2CH3 E:Z = 44:56	(55)	49

C6H5COCH3

40

(63)

 $C_6H_5(CH_3)C=CHCO_2C_2H_5$

E:Z = 2:1

144

Reaction

Conditions

Product(s)

and Yield(s) (%)

 $(CH_3O)_2CHC(C_4H_{gr}n)=CHCO_2C_4H_{gr}t$

CHCO2C4H9-1 (90)

E:Z = 16:84

CHCO_C4H-1 (60)

Refs.

49

201

50

Carbonyl

Compound

(CH3O)2CHCOC4Hqn

151

Silane

 \mathbf{R}^{1}

 \mathbb{R}^2

R

x

	Silan	e		Carbonyl	Reaction	Product(s)	
х	R	R1	R ²	Compound	Conditions	and Yield(s) (%)	Refs
				\bigcirc	"	C ₆ H ₅ (77)	218
				\bigcirc °	,,	C ₆ H ₅ (86)	218
				Ċ	ő	C _e H ₅ (87)	218
						C ₆ H ₅ (36)	218
				C ₆ H ₅ COCH ₃		C ₆ H ₅ (43) ^c C ₆ H ₃ CH ₃	218
0	CH ₃	СН3	C₂H₅	CH ₂ =CHCHO (CH ₃) ₂ CO n-C ₃ H ₇ CHO	LDA, -78°	CH ₂ =CHCH=C(CH ₃)CO ₂ H ₅ (65) E: Z = 23:77 (CH ₃) ₂ C=C(CH ₃)CO ₂ C ₂ H ₅ (84) $n-C_3H_7$ CH=C(CH ₃)CO ₂ C ₂ H ₅ (57) E: Z = 25:75	209) 209
				i-C₃H₁CHO	,	$i-C_3H_7CH = C(CH_3)CO_2C_2H_5$ (60 E: Z = 10:90 (77)	209
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	n-C ₆ H ₁₃ CHO OTMS OMSO	" "	$n-C_0H_{13}CH = C(CH_3)CO_2C_2H_5$ (69 E:Z = 25:75 $C(CH_3)CO_2C_2H_5$ (77) E:Z = 1:3) 209
o	C ₆ H ₅ - (CH ₃) ₂	СН3	ŌŢMS C₂H₅		1. LDA, -78° 2. MgBr ₂ LDA, -78°	E: Z = 37:15 " (43)	45 45
0	CH ₃	CH ₃	t-C ₄ H ₉	(M	i n	E:Z = 1:1.6 $C(CH_3)CO_2C_4H_9-t$ (70)	45
o	СН3	CH,S CH	CH ₃	C₂H₃CHO	CH ₃ SCHLiSOCH ₃ , CH ₂ =C[Si(CH ₃) ₃], -78°	all TMS now OH $E: Z = 1:7.2$ $CH_3SCH(SOCH_3)CH_2C(CO_2CH_3) = CH-C_2H_5$ $E: Z = 1:1$ (72)	204
		CH₃SO		C ₆ H ₅ CHO	.33	CH3SCH(SOCH3)CH2C(CO2CH3)=CH-C6H5 (90E:Z = 100:0	204

_	Silane		Carbonyl Reaction			Product(s)		
	х	R	R1	R ²	Compound	Conditions	and Yield(s) (%)	Re
					С ₆ Н ₅ СН—СНСНО	,	CH ₃ S(CH ₃ SO)CHCH ₂ C(CO ₂ CH ₃)=CH- CH=CHC ₆ H ₅ (71) E:Z = 100:0	204
٠	o	C ₆ H ₅ -	C ₂ H ₅	C ₂ H ₅	i-C ₃ H ₇ CHO	LDA, -78°	$i-C_3H_7CH = C(C_2H_5)CO_2H_5$ (55) E: Z = 18:82	204
		(CH ₃) ₂			C₀H₃CHO	"	E:Z = 16:62 $C_6H_5CH = C(C_2H_5)CO_2H_5$ (73) E:Z = 20:80	204
	0	CH ₃	—(CH ₂) _z	-	СН₃СНО	(C ₆ H ₅) ₃ CLi, −78°	(76)	212
	0	СН3	—CH₂CH(C	:H ₃)—	,,	**	(80)	212
iQ	o	CH ₃	CH ₂ =CH CH ₂ =C		r-C ₄ H ₉ CHO	CH ₂ =CHC(Li)=CH ₂ , CH ₂ =C[Si(CH ₃) ₃] CO ₂ CH ₃ , -78°	$CH_2 = CH$ (47) $CH_2 = CCH_2C(CO_2CH_3) = CHC_4H_9-t$ E: Z = 0:100	204
			CH ₂		С₅Н₅СНО	,,	CH2=CH (74) $CH2=CCH2C(CO2CH3)=CHC6H5$ $E:Z = 2:1$	204
					С ₆ Н ₅ СН=СНСНО	9 0.	$CH_2 = CH CO_2CH_3 \qquad (45)$ $CH_2 = CCH_2C = CHCH = CHC_6H_5$ $E: Z = 1:3$	204
		(CH ₃) ₃ Si	DN(C ₃ H ₇ -i) ₂		С₅Н₅СНО	s-C₄H ₉ Li, TMEDA, −78°	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220,
	C ₆ H ₅ N-C ₆ H ₅ H	O H Si(CH ₃) ₃			CH₃CHO	LDA, -78°	C ₆ H ₅ (60)	219
	C ₆ H ₅	Si(CH ₃) ₃			n	*	E:Z = 1:1 " $E:Z = 6:4$ (33)	219
	C ₆ H ₅ 1	H			p-O₂NC₀H₄CHO	"	C_6H_5 C_6H_5 $C_6H_6NO_2-p$ $C_6H_6NO_2-p$ $C_6H_6NO_2-p$	219

TABLE VII. Formation of α,β -Unsaturated Carboxylic Acid Derivatives (Continued)

		Silane			Carbonyl	Reaction	Product(s)		
	х	R	R1	R ²	Compound	Conditions	and Yield(s) (%)		Refs.
	C ₆ H ₅	о •			"	,,	E: Z = 1:2	(68)	219
	C ₆ H ₅ A i	i(CH ₃) ₃			o-ClC ₆ H ₄ CHO	300	C _e H ₅ (29)		219
	C ₆ H ₅	p				,,	C_6H_5 H CHC_6H_4Cl-o $E:Z=0:100$ $E:Z=0:100$	(17)	219
	C ₆ H ₅ H H	Si(CH ₃) ₃			p-(CH ₃) ₂ NC ₆ H ₄ CHO	: 19	C ₆ H ₅ (28)		219
	C ₆ H ₅	O H i(CH ₂) ₃			9	SHE	C_6H_5 H $CHC_6H_4N(CH_3)_2$ $E:Z=1:1$ $E:Z=1:1$	(64)	219
	o	СН3	C ₆ H ₅ (CH ₂) ₂	СН3	(CH ₃) ₂ CO	C ₆ H ₅ MgBr, CuCl, Et ₂ O, -15°, CH ₂ —C[Si-(CH ₃) ₃]- CO ₂ CH ₃	C ₆ H ₅ CH ₂ C(CO ₂ CH ₃)=C(CH ₃) ₂	(73)	204
					СН₃СН—СНСНО	"	C ₆ H ₅ CH ₂ C(CO ₂ CH ₃)—CHCH—CHC E: Z = 3:7	H ₃ (59)	204
					t-C₄H ₉ CHO		$C_6H_5CH_2C(CO_2CH_3)$ =CHCO ₂ C ₄ H ₉ -t E:Z = 3:2		204
					O°	,,	C(CO ₂ CH ₃)CH ₂ C ₆ H ₅ (40)		204
_					C ₆ H ₅ CHO	n	$C_6H_5CH_2C(CO_2CH_3)$ =CHC ₆ H ₅ E:Z = 1:4	(80)	204
C ₁₀	0	СН3	—CH₂CH(Ce	H ₁₃ -n)—	СН3СНО	(C ₆ H ₅) ₃ CLi, -78°	(60)		212
	0	C₀H₅-	n-C ₈ H ₁₇	C ₂ H ₅	n-C ₃ H ₇ CHO	LDA, -78°	n-C ₈ H ₁₃ n-C ₃ H ₇ CH=C(C ₈ H ₁ -n)CO ₂ C ₂ H ₅	(—)	209
		(CH ₃) ₂			"	1: LDA, -78° 2. H ₂ O	E:Z = 33:67	(—)	209
					n-C ₆ H ₁₃ CHO	2. H ₂ O 6. BF ₃ ·OEt ₂ LDA, -78°	E: Z = 12:88 $n-C_6H_{13}CH = C(C_8H_{17}-n)CO_2C_2H_5$ E: Z = 29:71	(62)	209

^a The yield is determined by GC analysis.
^b No Z isomer is detected.
^c These conditions are inferred from the text.
^d The isomer ratio is not stated.
^e No specific yield is given but it is in the 60-80% range.

$$\begin{array}{c|c}
R^1 \\
R^2C \\
\parallel \\
O
\end{array}$$

$$\begin{array}{c}
H \\
Si(CH_3)_3
\end{array}$$

$$\begin{array}{c}
\frac{1. \text{ Base}}{2. \text{ R'k'co}}
\end{array}$$

$$\begin{array}{c}
R^1 \\
R^2C
\end{array}$$

$$\begin{array}{c}
R^3 \\
R^4
\end{array}$$

	Sil	ane	Carbonyl	Reaction	Product(s)	
	R1	R²	Compound	Conditions	and Yield(s) (%)	Ref
C ₂						
	Н	Fe(CO)[$P(C_6H_5)_3$]- (C_5H_5)	CH₂O	<i>n</i> -C₄H ₉ Li, −78°	$[(C_0H_5)_3P](CO)(C_5H_5)FeCO-CH=CHR$	51
			20072		R = H (30)	
			CH₃CHO	,,	$R = CH_3$ (88) $E:Z = 2:1$	51
			C ₂ H ₅ CHO	,,	$R = C_2H_5$ (77) $E:Z = 2:1$	51
			CH ₂ =CHCHO	,,	$R = CH = CH_2$ (68) $E: Z = 3:2$	51
			n-C ₄ H ₉ Li	"	$R = C_4H_9-n$ (88) $E:Z = 3:2$	51
			t-C ₄ H ₉ Li	"	$R = C_4H_9-t$ (63) $E:Z = 100:0$	51
			Furfural	533	R = 2-Furyl (78) $E:Z = 3:2$	51
			С₀Н₀СНО	"	$R = C_6H_5$ (80) $E:Z = 3:2$	51
С,	СН3	Si(CH ₃) ₃	C₂H₃CHO	1. LDA, 0°	C ₂ H ₃ CH=C(CH ₃)COSi(CH ₃) ₃ (82) ^a	44
	II I I 5	- A	1.1 To 1.	278°		
			i-C ₃ H ₇ CHO	,,	i-C ₃ H ₇ CH=C(CH ₃)COSi(CH ₃) ₃ (90) ^a	44
			(E)-CH₃CH=CHCHO		(E)-CH ₃ CH=CHCH=C(CH ₃)- COSi(CH ₃) ₃ (91) ^a	44
			n-C₄H ₉ CHO	**	$n-C_4H_9CH=C(CH_3)COSi(CH_3)_3$ (78)	44
			s-C₄H₀CHO	"	$s-C_4H_9CH=C(CH_3)COSi(CH_3)_3$ (85)*	44
			t-C ₄ H ₉ CHO	LDA, 0°	t-C ₄ H ₉ CH=C(CH ₃)COSi(CH ₃) ₃ (72) ^e	44
			n-C₄H ₉ C≡CCHO	1. LDA, 0°	n -C ₄ H ₉ C \equiv CCH \equiv C(CH ₃)	44
				278°	COSi-(CH3)3 (78)a	
			C ₆ H ₅ CHO	22	$C_6H_5CH = C(CH_3)COSi(CH_3)_3$ (84) ^a	44
C,	**	CH	: CH CH CHO	(CII) S:CIII :C II 709	CH COCH CHOLCH: (75)	61
	H CH—CHCH	C ₂ H ₅	i-C ₃ H ₇ CH ₂ CHO	$(CH_3)_3SiCHLiC_5H_{11}-n, -78^\circ$	C_2H_5COCH = $CHCH_2C_3H_7-i$ (75) ⁶ $n-C_4H_9CH$ = $C(C_4H_9-n)COSi(CH_3)_3$	61 44
	CH ₂ =CHCH ₂	Si(CH ₃) ₃	n-C₄H₀CHO	1. LDA, 0° 278°	$n-C_4H_9CH=C(C_4H_9-n)COSI(CH_3)_3$ (80) ^a	44
C,				2. – 76	(80)	
	Н	n-C ₅ H ₁₁	t-C ₄ H ₉ CHO	$(CH_3)_3SiCHLiC_5H_{11}-n, -78^\circ$	$n-C_5H_{11}COCH=C(C_5H_{11}-n)CO-$	61
			(E) - n - C_3 H ₇ CH=CHCHO	,,	Si(CH ₃) ₃ (75) ^b (E)- n -C ₃ H ₇ CH=CHCH=C-	61
			C ₆ H ₁₁ CHO	"	$(C_5H_{11}-n)COSi(CH_3)_3$ (81) ^b $C_6H_{11}CH=C(C_5H_{11}-n)COSi(CH_3)_3$	61
			С"Н,СНО	"	$C_bH_3CH=C(C_3H_{11}-n)COSi(CH_3)_3$	61
			n-C ₈ H ₁₇ CHO	,,	$(91)^b$ $n-C_8H_{17}CH=C(C_3H_{11}-n)COSi(CH_3)_3$ $(82)^b$	61
C,						
	C ₆ H ₅ CH ₂	Si(CH ₃) ₃	CH₃CHO	1. LDA, 0° 278°	$CH_3CH = C(CH_2C_6H_5)COSi(CH_3)_3$ (84) ^a	44

TABLE VIII. Formation of α,β -Unsaturated Carbonyl Compounds (Continued)

Silane			- contraction	D	
R ¹	———— Carbonyl Reacti		Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
(CH ₃) ₃ Si	, ,	CH ₃ H CHO OSi(C ₂ H ₃) ₃	LiN[Si(CH ₃) ₃] ₂ , -78°	OR (95)	188
				$R = Si(C_2H_5)_3$	

- $^{\rm o}$ No Z isomer is detected. $^{\rm b}$ The $E\!:\!Z$ isomer ratio is not quoted.

	Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)		Refs
				THE STATE OF THE PARTY OF THE P		
	[(CH₃)₃Si]₂NH	C,H,CHO (C,H,),CO	NaH, C ₆ H ₆ , 70°	$(CH_3)_3SIN = CHC_6H_5$ (61) $(CH_3)_3SIN = C(C_6H_5)_2$ (84) $NSi(CH_3)_3$ (20)		226 226 226
	p-CH ₃ C ₆ H ₄ NHSi(CH ₃) ₃	t-C ₄ H ₄ NCO N-(CH ₂) _n O CF ₃	n-C ₄ H ₉ Li, C ₆ H ₁₂ n-C ₄ H ₉ Li, THF, -78°	$NSi(CH_3)_3$ $(CH_3)_3SiN = C = NC_4H_6-t$ (56) $N - (CH_2)_n$ $NC_6H_4CH_3-p$ CF_3		356 229
_		n = 1 $n = 2$		n = 1 (74) n = 2 (69)		
Cı	(CH ₃) ₃ SiCH ₂ CN	\bigcirc °	LDA, Et ₂ O, -78°	CHCN (73)		224
		C₀H₀CHO	31	C_6H_5CH —CHCN E:Z=1:1	(77)	224
		C₀H₅CH=CHCHO	***	E:Z = 1:1 $C_0H_0CH=CHCH=CHCN (95)^a$		224

	-	Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)		Refs.
		[(CH ₃) ₃ Si] ₂ CHNCS	С _в н,сно	1. (C ₄ H ₉) ₄ NF, THF 2. H ₂ O	$C_6H_5CH=CHNCS$ (31) + E:Z = 56:44 C_6H_5 Si(CH ₃) ₃ (6) NH		224
164	C ₂	(CH ₃) ₃ SiCH ₂ CH=NN(CH ₃) ₂	CH ₃ CH=CHCHO n-C ₅ H ₁₁ CHO	LDA, THF, -78° 1. LDA, THF, -78°	CH ₃ CH=CHCH=CHCH=NN(CH ₃) ₂ (80) n-C ₃ H ₁₁ CH=CHCH=NN(CH ₃) ₂ (93) n-C ₃ H ₁₁ CH=CHCHO (94)		236 236 231
			\bigcirc °	2. H ₂ O, (CO ₂ H) ₂ LDA, THF, -78°	CHCH=NN(CH ₃) ₂ (77)		236
			,,	1. LDA, THF, -78°	СНСНО (90)		231
		CH ₂ Si(CH ₃) ₃	C₅H₃CHO C₂H₃COCH₃	2. H ₂ O, (CO ₂ H) ₂ LDA, THF, -78° n-C ₄ H ₉ Li, THF, -78°	$C_6H_5CH=CHCH=NN(CH_3)_2$ (95) N $CH=C(CH_3)R$ $R = C_2H_5$ (80-95) ⁶ $E:Z = 96:4^c$		236 222
165			i-C ₃ H,CHO C ₆ H,COCH ₃	" "	R = i -C ₃ H ₇ (80-95) ^b E:Z = 85:15 ^c R = C ₆ H ₅ (80-95) ^b E:Z = 95:5 ^c (80-95) ^b E:Z = 95:5 ^c		222 222 222
	C ₃	[(CH ₃) ₃ Si] ₂ NCH=CHCH ₃	i-C ₃ H ₇ CHO (C ₂ H ₃) ₂ CO	(C ₄ H ₉) ₄ NF, THF CsF, DMF, 80° (C ₄ H ₉) ₄ NF, THF	CH ₃ CH=CHN=CHC ₃ H ₇ - i (50) ^a CH ₃ CH=CHN=C(C ₂ H ₅) ₂ (30) (23) ^a CH=NCH=CHCH ₃		230 230 230
			C,H,CH=CHCHO	CsF, DMF, 80° (C,H,),NF, THF CsF, DMF, 80°	CH ₃ CH=CHN=CHC ₆ H ₅ (80) ^a CH ₃ CH=CHN=CHCH=CHC ₆ H ₅ (29) ^a N C ₆ H ₅ (67)		230 230 230
			(C ₆ H ₅) ₂ CO	CsF, DMF, 80°	C_6H_5 $CH_3CH=CHN=C(C_6H_5)_2$ E:Z = 62:38	(80)	230
		(CH ₃) ₃ SiCH(CH ₃)CH=NN(CH ₃) ₂	i-C₁H₁CHO	 LDA, THF, 0° H₂O, (CO₂H)₂ " 	i-C ₃ H ₇ CH=C(CH ₃)CHO (88) C(CH ₃)CHO (90)		231 231
					Conjunt (55)		201
			С₀Н₀СНО	,,	$C_6H_5CH=C(CH_3)CHO$ E:Z=1:1	(90)	231

[&]quot; The E: Z isomer ratio is not given.

b The exact yield is not given.

^{&#}x27;The isomer ratio is determined by GLC analysis.

d The yield is from GLC analysis.

			Silane			Carbonyl	Reaction	Product(s)	
	х	Y	R	R1	R ^{2a}	Compound	Conditions	and Yield(s) (%)	Refs.
			225	501	222		6787566487411AC165149	100 to	
_	_6	_	CH ₃	Н	Н	C₀H₅CHO	n-C₄H ₉ Li, THF, 0°	$C_6H_5CH=CHSCH_3$ (64) E:Z=1:1	3
						(C ₆ H ₅) ₂ CO C ₆ H ₅ CON(CH ₂) ₅		$(C_6H_5)_2C$ =CHSCH ₃ (56) $C_6H_5[N(CH_2)_5]C$ =CHSCH ₃ (72) E: Z = 87:13	3 243, 24
-	-	_	C ₆ H ₅	Н	н	CH₂O	" CHI TMEDA CH 0	CH2=CHSC6H5 (65)	157 157
						СН₃СНО	n-C ₄ H ₉ Li, TMEDA, C ₆ H ₁₄ , 0° n -C ₄ H ₉ Li, THF, 0°	CH ₃ CH=CHSC ₆ H ₅ (58)	157
						(CH ₃) ₂ CO	: 22	$E: Z \sim 1:1$ $(CH_3)_2 C = CHSC_6H_5$ (50, 62) $E: Z \sim 1:1$	157, 23
						CH ₂ =CHCOCH ₃ n-C ₄ H ₉ CHO	"	CH ₂ =CHC(CH ₃)=CHSC ₆ H ₅ (71) n-C ₄ H ₉ CH=CHSC ₆ H ₅ (67) $E: Z \sim 1:1$	242 157
			CH ₃ CH=CHCOCH ₃ i-C ₃ H ₇ COCH ₃	*	$CH_3CH=CHC(CH_3)=CHSC_6H_5$ (95) $i-C_3H_7C(CH_3)=CHSC_6H_5$ (68)	242 157			
						$(C_2H_5)_2CO$	**	$E: Z \sim 1:1$ $(C_2H_5)_2C = CHSC_6H_5$ (71)	157
						0	•	$E: Z \sim 1:1$ $CHSC_6H_5 (60)$	157
						(CH ₃) ₂ C=CHCOCH ₃ n-C ₃ H ₁₁ CHO	"	$(CH_3)_2C = C(CH_3) = CHSC_6H_5$ (85) $n-C_5H_{11}CH = CHSC_6H_5$ (63)	242 157
						**	<i>n</i> -C ₄ H ₉ Li, TMEDA, C ₆ H ₁₄ , 0°	$E: Z \sim 1:1$ " $E: Z \sim 1:1$	157
						\bigcirc °	n-C₄H9Li, THF, 0°	CHSC ₆ H ₅ (65)	157, 2
						., t-C₄H₀COCH₃	n-C ₄ H ₉ Li, TMEDA, C ₆ H ₁₄ , 0° n-C ₄ H ₉ Li, THF, 0°	" (68) t-C ₄ H ₉ C(CH ₃)=CHSC ₆ H ₅ (55) E:Z=2:3	157 239
						Ļ	5 33	CHSC ₆ H ₅ (75, 90)	239, 2
								\bigcup	
						C₀H₃CHO	•	$C_6H_5CH=CHSC_6H_5 $ $E:Z = 1:2 $ (71)	157, 2
						•	n-C ₄ H ₉ Li, TMEDA, C ₆ H ₁₄ , 0°	E:Z - 1:1 (74)	157
						C ₆ H ₅ COCH ₃	n-C ₄ H ₉ Li, THF, 0°	$C_6H_5C(CH_3)$ =CHSC ₆ H ₅ (63) $E:Z \sim 1:1$	157
							n-C ₄ H ₉ Li, TMEDA, C ₆ H ₁₄ , 0°	$E:Z \sim 1:1$ $E:Z \sim 1:1$ (69)	157
						Ĺ	n-C₄H9Li, THF, 0°	CHSC ₈ H ₅ (100)	242
						n-C ₇ H ₁₅ CHO	"	$n-C_7H_{15}CH = CHSC_6H_5$ (64) $E: Z \sim 1:1$	157
					29		,,	CHSC ₆ H ₅ (90)	242
						Adamantanone	,,	CHSC ₆ H ₅ (80)	239
						15.0-4.00000			
						(C ₆ H ₅) ₂ CO	,,	$(C_6H_5)_2C=CHSC_6H_5$ (82)	157

		Silan			Carbonyl	Reaction	Product(s)	
x	Y	R	R1	R24	Compound	Conditions	and Yield(s) (%)	Refs
					HCON(CH ₃) ₂	11	$(CH_3)_2NCH=CHSC_6H_5$ (64) E: Z = 100:0	243, 24
					t-C ₄ H ₉ CON(CH ₃) ₂	200	$(CH_3)_2NC(C_4H_9-t)=CHSC_6H_5$ (40)	243, 24
					C ₆ H ₅ CON(CH ₃) ₂	•	E: Z = 20:80 $(CH_3)_2NC(C_6H_5) = CHSC_6H_5$ (44)	243, 24
					C ₆ H ₅ CON(CH ₂) ₂	,,	E: Z = 96:4 $(CH_2)_2NC(C_6H_5) = CHSC_6H_5$ (87)	243, 24
					C ₆ H ₅ CON(CH ₂) ₅	31 2	E: Z = 80:20 (CH ₂) ₅ NC(C ₆ H ₅)=CHSC ₆ H ₅ (55)	243, 24
	_	C₀H₅	н	SC ₆ H ₅	n-C₅H₁₁CHO	LiC ₁₀ H ₈ , THF, -78°	E: Z = 100:0 $n-C_3H_{11}CH=CHSC_6H_5$ (75)	157, 24
					^ 0	**	$E: Z \sim 1:1$ CHSC ₆ H ₅ (61)	157, 2
					C₀H₃CHO	n	$C_6H_5CH=CHSC_6H_5$ (70) $E: Z \sim 1:1$	157, 24
		120.000	1200	222	(C ₆ H ₅) ₂ CO	"	$(C_6H_5)_2C = CHSC_6H_5 $ (73)	
0	_	C₀H₅	СН3	SC ₆ H ₅	n-C₄H ₉ CHO		n-C ₄ H ₉ CH=C(CH ₃)SC ₆ H ₅ (63) $E: Z \sim 1:1$	
					C ₆ H ₅ CHO	,,	$C_6H_5CH=C(CH_3)SC_6H_5$ (64) $E: Z \sim 1:1$	157, 24
	_	C ₆ H ₅	C ₂ H ₅	H	n-C₄H ₉ CHO	$CH_2 = C(SC_6H_5)[Si(CH_3)_3],$ CH_3Li , TMEDA, Et_2O	$C_2H_5C(SC_6H_5)=CHC_4H_9-n$ (60) $E: Z \sim 1:1$	157
					C ₆ H ₅ CHO	"	$C_2H_5C(SC_6H_5)$ =CHC ₆ H ₅ (65) $E: Z \sim 1:1$	157
-	-	C₀H₅	n-C ₄ H ₉	SC ₆ H ₅	CH₂O	LiC ₁₀ H ₈ , THF, -78°	$CH_2 = C(C_4H_9 - n)SC_6H_5$ (71)	157, 24 157, 24
					n-C₄H₀CHO	**	$n-C_4H_9CH==C(C_4H_9-n)SC_6H_5$ (58) $E:Z \sim 1:1$	
					r °	,,	$C(C_4H_9-n)SC_6H_5$ (51)	157, 24
					C ₆ H ₅ CHO	•	$C_6H_5CH=C(C_4H_9-n)SC_6H_5$ (66) $E: Z \sim 1:1$	157, 24
			C.II		(C ₆ H ₅) ₂ CO	"	$(C_6H_5)_2C = C(C_4H_9-n)SC_6H_5$ (61)	157, 24 157
	-	C ₆ H ₅	n-C ₅ H ₁₁	Н	CH₃CHO	$CH_2 = C(SC_6H_5)[Si(CH_3)_3],$ $n-C_4H_9Li$, TMEDA, Et_2O	$CH_3CH = C(C_3H_{11}-n)SC_6H_5$ (47) $E: Z \sim 1:1$	
					n-C ₄ H ₉ CHO	"	$n-C_4H_9CH=C(C_5H_{11}-n)SC_6H_5$ (52) $E: Z \sim 1:1$	157
					┌ °	"	$C(C_5H_{11}-n)SC_6H_5$ (50)	157
					<u></u>	,,	CHCH C(CH -)2CH (41)	152
					C₀H₃CHO		$C_6H_5CH=C(C_5H_{11}-n)SC_6H_5$ (61) $E:Z\sim 1:1$	
					C₀H₅COCH₃	,,	$C_6H_5(CH_3)C=C(C_5H_{11}-n)SC_6H_5$ (43) $E: Z \sim 1:1$	
•	-	C ₆ H ₅	C ₆ H ₅	Н	CH₂O	n-C ₄ H ₉ Li, TMEDA, C ₆ H ₁₄ , 0°	$CH_2 = C(C_6H_5)SC_6H_5 (71)$	157
					n-C₄H₀CHO	"	n-C ₄ H ₅ CH=C(C ₆ H ₅)SC ₆ H ₅ (63) C(C ₆ H ₅)SC ₆ H ₅ (47)	157 157
					С,Н,СНО	n Harris Andreas (Marian Marian)	$C_6H_5CH=C(C_6H_5)SC_6H_5$ (53)	157
	_	C ₆ H ₅	C ₆ H ₅ CH ₂	Н	n-C ₄ H ₉ CHO	$CH_2 = C(SC_6H_5)[Si(CH_3)_3],$ C_6H_5Li , TMEDA, Et_2O	$n-C_4H_9CH=C(CH_2C_6H_5)SC_6H_5$ (49) $E:Z \sim 1:1$	
					O°	"	C(CH ₂ C ₆ H ₅)SC ₆ H ₅ (38)	157
							The state of the s	157
					C ₆ H ₅ CHO	*	$C_6H_5CH = C(CH_2C_6H_5)SC_6H_5 $ (51)	157
Н3	_	CH ₃	н	н	CH₃COC₂H₅	KOC ₄ H ₉ -t (2 eq), DMSO	$E: Z \sim 1:1$ $C_2H_3C(=CH_2)CH(CH_3)CH_2SCH_3$ (25)	247
Н3	_	СН3	н	н			E:Z ~ 1:1	

Silane

t-C4H9Li, THF, -70°

n-C₄H₉Li, THF, -70°

C6H5CH=CHCHO

245

245

(81)

E:Z = 2:1C₆H₅CH=CHCH=CHSOC₆H₅ (70)

E:Z ~ 1:1

Reaction

Conditions

Product(s)

and Yield(s) (%)

Refs.

Carbonyl

Compound

R24

177

Silane

R

X

Y

R1

TABLE X. SULFUR-CONTAINING α-CARBANIONS (Continued)

		Silan	e		Carbonyl	Reaction	Product(s)		
х	Y	R	R1	R2a	Compound	Conditions	and Yield(s) (%)		Refs.
					,,	n-C ₄ H ₉ Li, DME, 0°	" (23)	72/07007	157
					C¢H3CHO	n-C₄H ₉ Li, THF, 0°	$C_6H_5CH=C(C_5H_{11}-n)SO_2C_6H_5$ $E:Z \sim 1:1$	(66)	157, 250
0	0	C ₆ H ₅	C6H5	H	CH ₂ O	**	$CH_2 = C(C_6H_5)SO_2C_6H_5$	(70)	157, 250
		ST.1.5.	0000000		n-C ₄ H ₉ CHO	"	$n-C_4H_9CH = C(C_6H_5)SO_2C_6H_5$ $E:Z \sim 1:1$	(61)	157, 250
					Ļ	,,	C(C ₆ H ₅)SO ₂ C ₆ H ₅ (23)		157, 250
					,,	n-C4HoLi, DME, 0°	" (25)		157
					C₀H₅CHO	n-C ₄ H ₉ Li, THF, 0°	$C_6H_5CH=C(C_6H_5)SO_2C_6H_5$ $E: Z \sim 1:1$	(82)	157, 25
					C ₆ H ₅ COCH ₃	: 11	$C_6H_5C(CH_3) = C(C_6H_5)SO_2C_6H_5$ $E: Z \sim 1:1$	(65)	157, 25
					HCON(CH ₃) ₂	311	$(CH_3)_2NCH = C(C_0H_5)SO_2C_0H_5$ E: Z = 100:0	(42)	244
					HCON(CH ₂) ₅	7.22	$(CH_2)_5NCH=C(C_6H_5)SO_2C_6H_5$ E:Z = 100:0	(81)	244
	4	4	Si(CH ₃) ₃		C ₂ H ₅ CHO	1. n-C₄H ₉ Li, THF 2. HMPA	CHC ₂ H ₅ (—)		254
		\	_\$O ₂		n-C ₄ H ₉ CHO		$E: Z = 1:1$ $CHC_4H_9-n (-)$ SO_2		254

R² is a group which is displaced to form the alkyllithium.
 No group is attached at this position.
 The yield is determined by NMR.
 This is the overall yield from the sulfoxide including the silylation step. Deprotonation for this latter step is achieved with LDA in THF at -90°.

TABLE XI. SELENIUM-CONTAINING α-SILYL CARBANIONS

	Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
C,					
	(CH ₃) ₃ SiCH(SeCH ₃) ₂	n-C ₁₀ H ₂₁ CHO	n-C₄H ₉ Li, THF	(CH ₃) ₃ Si OH (CH ₃) ₃ Si OH H CH ₃ Se $C_{10}H_{21}-n$ + CH ₃ Se $C_{10}H_{21}-n$ 35:65 (54)	257
C ₂				35:65 (54)	
O 2	(CH ₃) ₃ SiC(CH ₃)(SeCH ₃) ₂	**	,,	(CH ₃) ₃ Si OH (CH ₃) ₃ Si OH CH ₃ + CH ₃ Se C ₁₀ H ₂₁ -n CH ₃ C ₁₀ H ₂₁ -n	257
				60:40 (50)	
	(CH ₃) ₃ SiC(CH ₃)(SeC ₆ H ₅) ₂		n	CH ₃ SeC ₆ H ₅ (40) Si(CH ₃) ₃	256
		n-C ₆ H ₁₃ CHO	**	$n-C_6H_{13}CHOHC(CH_3)(SeC_6H_5)Si(CH_3)_3$ (40)	256
		n-C ₁₀ H ₂₁ CHO	,,	$n-C_{10}H_{21}CHOHC(CH_3)(SeC_6H_5)Si(CH_3)_3$ (50)	256
		n-C ₃ H ₁₉ COCH ₃	**	$n-C_3H_{19}COHC(CH_3)(SeC_6H_5)Si(CH_3)_3$ (35)	256

TABLE XII. PREPARATION OF VINYL SELENIDES

	TABLE XII. PREPARATION	N OF VINYL SELENIDES	
Silane	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₂			
(CH₃)₃Şi OH	KOC₄H₀-t, THF, 55°	CH_3Se $C_{10}H_{21}-n$ (74)	257
н		H H	
CH ₃ Se C ₁₀ H ₂₁ - <i>n</i>	"		257
(CH₃)₃Si OH		CH ₃ Se H (78)	237
H-C ₁₀ H ₂₁ -n		$H C_{10}H_{21}-n$	
C ₁₃ C			
(CH ₃) ₃ Si OH	"	CH_3Se $C_{10}H_{21}-n$ (89)	257
NO 1723.14)=(°10-121 11 (07)	207
CH ₃ C ₁₀ H ₂₁ -n		CH ₃ H	
(CH ₂) ₃ Şi OH	**	CH₃Se H (70)	257
		\succ	100
CH ₃ C ₁₀ H ₂₁ -n CH ₃ Se H		CH_3 $C_{10}H_{21}-n$	

TABLE XIII. FORMATION OF VINYLSILANES $(CH_3)_3Si \underset{R^2}{\swarrow} R^1 \xrightarrow{1. Base} (CH_3)_3Si \underset{R^1}{\swarrow} R^3$

	Silane		Carbonyl	Reaction	Product(s)	
	R ¹ .	R²	Compound	Conditions	and Yield(s) (%)	Refs.
Cı					/	
	H	H	CH₂O	t-C ₄ H ₃ Li, THF, HMPA, -78°	$(CH_3)_3SiCH=CH_2$ (45) $(CH_3)_3SiCH=CHCH=CH_2$ (13)	170 103
			CH_2 =CHCHO n - C_3H_7 CHO	n-C₄H ₉ Li, TMEDA, Et ₂ O t-C₄H ₉ Li, THF, HMPA, −78°	$(CH_3)_3SICH=CHC_3H_7-n$ (25) ⁴	170
			C ₆ H ₅ CHO	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	$(CH_3)_3SiCH=CHC_6H_5$ (70)	170, 259
			0,11,0110		E:Z=1.4:1	REALIZATION VILLE
			С ₆ Н ₅ СН=СНСНО	22	(CH ₃) ₃ SiCH=CHCH=CHC ₆ H ₅ (37) E:Z = 1.4:1	170
			(C ₆ H ₅)₂CO	**	$(CH_3)_3SiCH=C(C_6H_5)_2$ (65)	170, 259
	H	SC ₆ H ₅	Q	LiC ₁₀ H ₈ , THF, -78°	(CH ₃) ₃ SiCH (0)	241
			C ₆ H ₅ CHO	***	$(CH_3)_3SiCH=CHC_6H_5$ $(72)^a$	241
			(C ₆ H ₅)₂CO	,,	(CH3)3SiCH=C(C6H5)2 (63)	241
2						
-	CH ₃	SC ₆ H ₅	CH ₂ O	**	$(CH_3)_3SiC(CH_3)=CH_2$ (71)	241
	C ,	00,13	C,H,CHO	***	$(CH_3)_3SiC(CH_3)=CHC_6H_5$ (69)°	241
C,			(C₀H₅)₂CO	39	(CH3)3SiC(CH3)=C(C6H5)2 (57)	241
~s	n-C₄H ₉	SC ₆ H ₅	H ₂ CO		$(CH_3)_3SiC(C_4H_9-n)=CH_2$ (73)	241
		0 00-15	C ₆ H ₅ CHO	,,	$(CH_3)_3SiC(C_4H_9-n)=CHC_6H_5$ (62)°	241
			"	(n-C ₄ H ₉) ₃ SnLi, THF, -78°	" (74)	164
			$(C_6H_5)_2CO$	LiC ₁₀ H ₈ , THF, -78°	$(CH_3)_3SiC(C_4H_9-n)=C(C_6H_5)_2$ (48)	241
6						
	n-C ₅ H ₁₁	н	CH ₂ O	$[(CH_3)_3Si]_2C=CH_2, n-C_4H_9Li$	$(CH_3)_3SiC(C_5H_{11}-n)=CH_2$ (73)	240, 259
	* "		С₀Н₀СНО	,,	$(CH_3)_3SiC(C_5H_{11}-n)=CHC_6H_5$ (66) E:Z=5:6	240, 259
	s-C ₄ H ₉ CH ₂	H	CH₂O	$[(CH_3)_3Si]_2C=CH_2$, $s-C_4H_9Li$	(CH3)3SiC(CH2C4H9-s)=CH2 (64)	240, 259
	t-C ₄ H ₉ CH ₂	H	CH ₂ O	[(CH3)3Si]2C=CH2, t-C4H9Li	(CH3)3SiC(CH2C4H9-t)=CH2 (71)	240, 259
			С₀Н₀СНО	1	$(CH_3)_3SiC(CH_2C_4H_9-t)=CHC_6H_5$ (64)	240, 259
			С₀Н₅СН=СНСНО	,,	E: Z = 5:7 $(CH3)3SiC(C4H9-t)=CHCH=CHC6H5 (61)$	240, 259
,					E:Z=2:5	
C,	C ₆ H ₅	SC ₆ H ₅	CH₂O	LiC ₁₀ H ₈ , THF, -78°	$(CH_3)_3SiC(C_6H_5)=CH_2$ (66)	241
38	00-25	00013	01.20	2101018, 1111,	(013)3010(0313) 0112 (00)	211
8	0.11.011	00.11	O II OIIO	(OW) 0 1:	(011) 0:0(011 0 11) 0110 11 (70)	***
	C ₆ H ₅ CH ₂	SC ₆ H ₅	С₀Н₀СНО	$(n-C_4H_9)_3$ SnLi	(CH3)3SiC(CH2C6H5)=CHC6H5 (76)a	164
12		69	72507181			
	t-C ₄ H ₉ (C ₆ H ₅)CH	H	CH₂O	[(CH3)3Si]2C=CHC4H9-t, C6H5Li	(CH3)3SiC[CH(C6H5)C4H9-t]=CH2 (81)	240

[&]quot; The E:Z isomer ratio is not given.

8

TABLE XIV. Phosphorus-Containing α -Silyl Carbanions

	Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
_ C₀					
	o,o,p-(t-C ₄ H ₉) ₃ C ₆ H ₂ PHSi(CH ₃) ₃	o,o,p-(t-C ₄ H ₉) ₃ C ₆ H ₂ PCO	1. t-C ₄ H ₉ Li, Et ₂ O 2. (CH ₃) ₃ SiCL	$ \begin{array}{c} C_4 H_9 - t \\ P = C \\ C_4 H_9 - t \end{array} $ $ \begin{array}{c} C_4 H_9 - t \\ C_4 H_9 - t \end{array} $	266
Cı	(CH ₃) ₃ SiCH ₂ P(C ₆ H ₅) ₂	C ₆ H ₅ CHO	n-C ₄ H ₉ Li, THF, 0°	$(C_6H_5)_2PCH=CHC_6H_5$ (53)	3
	$(CH_3)_3SiCH_2\dot{P}(C_6H_5)_3\cdot\bar{I}$ $(CH_3)_3Si(CH=P(C_6H_5)_3$	(C ₆ H ₅) ₂ CO (C ₆ H ₅) ₂ CO CH ₂ =CHCOCH ₃ CH ₃ CH=CHCHO	"C ₆ H ₅ Li Et ₂ O, -63°	E: Z = 1:1 $(C_6H_5)_2PCH = C(C_6H_5)_2$ (65) $(C_6H_5)_2C = C = C(C_6H_5)_2$ (20-35) $CH_2 = CHC(CH_3) = CHP(C_6H_5)_3 \cdot OSi(CH_3)_3$ (50)° $CH_3CH = CHCH = CHP(C_6H_5)_3 \cdot OSi(CH_3)_3$ (86)° $C_6H_5CH = CHCH = CHP(C_6H_5)_3 \cdot OSi(CH_3)_3$	3 262 263 263 263
		$C_6H_5CH=C(C_6H_5)CHO$,,	$C_6H_5CH=C(C_6H_5)CH=CHP(C_6H_5)_3\cdot OSi(CH_3)_3$ (<5) ^a	263
	(CH ₃) ₃ SiCH ₂ PS(C ₆ H ₅) ₂ (CH ₃) ₃ SiCH ₂ PO(OCH ₃) ₂	(C,Hs),CO CHO -O -O	n-C₄H₃Li, THF, 0°	$(C_6H_5)_2$ PSCH= $C(C_6H_5)_2$ (80) CH=CHPO(OCH ₃) ₂ (—) O E:Z = 1:1	3 264
		СНО	27	CH=CHPO(OCH ₃) ₂ (—)	264
		-°×		E:Z=2:1	
	(CH ₃) ₃ SiCH ₂ PO(OC ₂ H ₅) ₂	(CH ₃) ₂ CO i-C ₃ H ₇ CHO	n-C₄H₀Li, THF	$(C_2H_5O)_2POCH=C(CH_3)_2$ (55) $(C_2H_5O)_2POCH=CHC_3H_7-i$ (92) E:Z=1:2.4	239 239
		\bigcirc °		CHPO(OC ₂ H ₅) ₂ + (65)	239
				CH ₂ PO(OC ₂ H ₃) ₂ (—)	
		С₀Н₀СНО	,,	$(C_2H_5O)_2POCH = CHC_6H_5$ (63) E: Z = 100:0	239
		Ĺ	3.22	$CHPO(OC_2H_5)_2 (42)$	239
		~	1944	(CHO) POCH C(CH) (02)	220
C ₄		$(C_6H_5)_2CO$	**	$(C_2H_5O)_2POCH = C(C_6H_5)_2$ (83)	239

⁴ The yield is determined by NMR spectroscopy.

TABLE XV. REACTIONS OF OXYGEN-CONTAINING α -SILYL CARBANIONS

Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁ (CH ₃) ₃ SiCH ₂ OGH ₃	Å	s-C₄H₃Li, THF, −78°	HO_CH(OCH ₃)Si(CH ₃) ₃ (73)	276, 277
		,,	HO_CH(OCH ₃)Si(CH ₃) ₃ (65)	277
	C ₆ H ₁₁ CHO Adamantanone	"	C ₆ H ₁₁ CHOHCH(OCH ₃)Si(CH ₃) ₃ (80) HO CH(OCH ₃)Si(CH ₃) ₃ (89)	276, 277 277
	СНО	,,	CHOHCHOCH, (85)	277
		"	CH(OCH ₃) ₃ Si(CH ₃) ₃	277
		199	CH(OCH ₃)Si(CH ₃) ₃ (73)	278
	СНО	"	Снонсносн,	277
C ₆ H ₅ CH(OCH ₃)Si(CH ₃) ₃	С₅н₃сно	n-C ₄ H ₉ Li, THF, 0° n-C ₄ H ₉ Li, HMPA, 0°	TMS C_H_CH=C(OCH_3)C_6H_5 (83)^a " (41)^a	279 279

^a The product is a mixture of isomers.

TABLE XVI. Elimination of β -Hydroxysilanes to Give Vinyl Ethers

	Silane	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
	CH(OCH ₃)Si(CH ₃) ₃	KH, THF, 60°	CHOCH ₃ (85)	276, 277
	Si(CH ₃) ₃ OR OH	NaH, DMF	OR	30
188	$R = CH_3$ $R = CH_2SCH_3$		$R = CH_3$ (>98) $R = CH_2SCH_3$ (90)	74
	C ₈ Si(CH ₃) ₃ OR OH	кн, тнғ	OR	74
	$R = CH_3$ $R = CH_2SCH_3$ $HO CH(OCH_3)Si(CH_3)_3$,,	R = CH ₃ (—) R = CH ₂ SCH ₃ (—) CHOCH ₃ (79)	74 277
	CHOHCH(OCH ₃)Si(CH ₃) ₃	(99)	CH=CHOCH ₃ (95) ^a	276, 277
	HO CH(OCH ₃)Si(CH ₃) ₃	,,	CHOCH ₃ (87)	276, 277
	CHOHCH(OCH ₃)Si(CH ₃) ₃	,	CH=CHOCH ₃ (70) ^a	277
	\mathcal{L}	"	(86)4	276
	CH(OCH ₃)Si(CH ₃) ₃ OH		сносн,	
189	CH(OCH ₃)Si(CH ₃) ₃	KH, THF, 0°	CH ₃ OCH O (85)	278
	CHOHCH(OCH ₃)Si(CH ₃) ₃	KH, THF, 60°	CH=CHOCH ₃ (70) ^a	277

^{*} The product is a mixture of isomers.

190

TABLE XVII. Other Miscellaneous α -Silyl Carbanions Containing a Heteroatom Substituent

	Silane	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)		
1						
	$(CH_3)_3SiCH_2Sn(C_4H_9-n)_3$	C₀H₃CHO	KDA, THF, -78°	$C_9H_9CH = CHSn(C_4H_9-n)_3$ E:Z = 55:45	(35)	260
	(CH ₃) ₃ SiCH ₂ B[OC(CH ₃) ₂] ₂		LiTMP, THF, 0°	CHB[OC(CH ₃) ₂] ₂ (87)		280
		С₀Н₀СНО	"	$C_bH_5CH=CHB[OC(CH_3)_2]_2$	(84)	280
		n-C ₆ H ₁₃ CHO	"	E:Z = 1:2 $n-C_6H_{13}CH$ —CHB[OC(CH ₃) ₂] ₂ E:Z = 1:2	(73)	280
		$(n-C_4H_9)_2CO$	**	$(n-C_4H_9)_2C=CHB[OC(CH_3)_2]_2$ (74)		280
	(CH ₃) ₃ SiCH ₂ BMes ₂	C ₆ H ₅ CHO	1. MesLi, THF 2. H ₂ O ₂ , NaOH	C ₂ H ₂ CH ₂ CHO (95)		283
		$(C_6H_5)_2CO$	MesLi	$(C_6H_5)_2C$ =CHSi(CH ₃) ₃ (55) + $(C_6H_5)_2C$ =CHBMes ₂ (45) ^a	[-	283
	(C ₆ H ₅) ₃ SiCHI ₂	С₀Н₃СНО	1. C₅H₅Li, THF 2. C₅H₅Li	C_sH_sCH = CHC_sH_s $E:Z \sim 0:100$	(36)	272
		•	1. C ₆ H ₃ Li, Et ₂ O, -60° 2. CH ₃ OH, -65°	HO $Si(C_6H_5)_3$ C_6H_5H H I (41)		271

[&]quot; The product is isolated as the aldehyde after oxidative workup.

TABLE XVIII. Formation of Alkenes with Two Heteroatom Substituents
$$\begin{array}{ccc} R^1X & YR^2 & \xrightarrow{1.\,Base} & R^1X \\ R_3Si & & & R^3 & \xrightarrow{2.\,R'R'CO} & R^2Y \\ \end{array} \qquad \begin{array}{cccc} R^4 & & & \\ R^5 & & & \end{array}$$

	Silane									
	х	Y	R	R1	R ²	R³	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)	Refs
Cı										
	CO ₂	Si	CH ₃	CH ₃	(CH ₃) ₃	H	QTMS	LDA, THF, -78°	ŢMS (15) ^a	45
						T	MSO A	2	N	
						1	YYY	~	CO ₂ CH ₃	
					_	. 🗼 1	ト人。し		1	
						$\Upsilon \sim 0$	~ ~		E:Z=3:1	
					TMS				president i incomediate a antiferrancia di transpirancia in incomediate	
	CO2	Si	t-C ₄ H ₉	CH ₃	(CH ₃) ₃	H	CH₂O	**	$CH_2 = C[Si(CH_3)_3]CO_2C_4H_9-t$ (35)	286
							CH₃CHO	**	$CH_3CH = C[Si(CH_3)_3]CO_2C_4H_9-t$ (58)	286
							C ₂ H ₅ CHO	**	$C_2H_5CH=C[Si(CH_3)_3]CO_2C_4H_9-t$ (51)	462
							,,	**	E:Z = 1:1	12
							M	(872)	(91)	46
							,,	Trp (my vp	E:Z = 1:2	
							!	KDA, THF, −78°	(10)	46
							,,		E:Z = 1:1	
								1. LDA, THF, -78°	(94)	46
							,,	2. MgBr ₂ ·OEt ₂	E:Z=2:1	44
								1. LDA, THF, -78°	" $E:Z = 1:1.2$ (75)	46
							(E)-CH3CH=CH-	2. (C ₂ H ₅) ₂ AlCl LDA, THF, -78°		286
							CHO	LDA, 1HF, -76	(E)-CH ₃ CH=CHCH=C[Si(CH ₃) ₃]- $CO_2C_4H_9$ -t (85) ^{b.c}	200
							i-C₃H₁CHO	**	i-C ₃ H ₇ CH=C[Si(CH ₃) ₃]CO ₂ C ₄ H ₉ -t	286
							1-031170110		(74)°	200
							,,	**	" (82)	46
									E:Z = 1:6.5	10
							,,	KDA, THF, -78°	" (82)	46
								,,	E:Z < 1:100	1.70

			Silane			Carbonyl	Reaction	Product(s)	
x	Y	R	R1	R ²	R ³	Compound	Conditions	and Yield(s) (%)	R
						**	1. LDA, THF, -78°	" (82)	46
						,,	 MgBr₂·OEt₂ LDA, THF, −78° 	E:Z = 3.5:1 (82)	46
						. 6 11 6716	2. (C ₂ H ₅) ₂ AlCl	E:Z=4:1	
						r-C₄H₀CHO	LDA, THF, -78°	$t-C_4H_9CH=C[Si(CH_3)_3]CO_2H_9-t$ (51) E:Z < 1:100	46
							KDA, THF, -78°	" (84)	46
							1. LDA, THF, -78°	E:Z < 1:100 (93)	46
							2. MgBr ₂ ·OEt ₂	E:Z = 1:30	40
							1. LDA, THF, -78°	" (81)	46
						C₀H₃CHO	 (C₂H₅)₂AICl LDA, THF, -78° 	E:Z = 9:1 C ₆ H ₅ CH=C[Si(CH ₃) ₃ CO ₂ C ₄ H ₉ -t (65) ^c	286
						,,		" (88)	46
						**	KDA, THF, -78°	E:Z = 1:9.4 (91)	46
							KDA, IIII, -76	E:Z=1:17	40
							1. LDA, THF, -78°	" (83)	46
						,,,	2. MgBr ₂ ·OEt ₂ 1. LDA, THF, -78°	E:Z = 1:3.4 (84)	46
	045.000	2644730	0.42.579	Carlo Della Anna del		037440 JCCC	2. (C ₂ H ₅) ₂ AICl	E:Z=2.5:1	
O_2	Sn	CH ₃	t-C ₄ H ₉	$(n-C_4H_9)_3$	н	CH ₂ O	LDA, THF, HMPA, -23° to -78°	$CH_2 = C[Sn(C_4H_9-n)_3]CO_2C_4H_9-t$ (26)	287
						n-C ₃ H ₇ CHO	-23 10 -78	$n-C_3H_7CH==C[Sn(C_4H_9-n)_3]CO_2C_4H_9-t$	287
						CHCHO		E:Z = 46:54 (51)	202
						i-C₃H₁CHO		$i-C_3H_7CH = C[Sn(C_4H_9-n)_3]CO_2C_4H_9-t$ E:Z = 69:31 (20)	287
						C ₆ H ₅ CHO	•	$C_6H_5CH=C[Sn(C_4H_9-n)_3]CO_2C_4H_9-t$	287
						••	KDA, THF, -78°	E:Z = 45:55 (70)	260
								E:Z=1:1	
						p-CH₃C₀H₄CHO p-ClC₀H₄CHO	LDA, THF, HMPA, -23° to -78°	$p\text{-CH}_3C_6H_4\text{CH} = C[Sn(C_4H_9-n)_3]CO_2 C_4H_9-t$ (31) $E:Z = 37:63$ $p\text{-CIC}_6H_4\text{CH} = C[Sn(C_4H_9-n)_3]CO_2C_4 H_9-t$ (41) $E:Z = 48:52$	287
						$(C_6H_5)_2CO$	KDA, THF, −78°	$(C_6H_5)_2C = C[Sn(C_4H_9-n)_3]CO_2C_4H_9-t$ (46)	26
CO ₂	Br	CH ₃	t-C ₄ H ₉	-	<u></u> 9	i-C₄H ₉ CHO	1. LDA, THF, -78° 2. SOCl ₂ , 0°	$i-C_4H_9CH=CBrCO_2C_4H_9-t$ (37)	28
						$(C_2H_5)_2CO$,,	$(C_2H_5)_2C = CBrCO_2C_4H_{9}-t$ (40)	28
						~ ~ °		CBrCO ₂ C ₄ H ₉ -t (66)	28
						~0	**	CBrCO ₂ C ₄ H ₉ -t (25)	28
						\smile		\smile	
						C'H'CHO	"	$C_6H_5CH=CBrCO_2C_4H_9-t$ (57) $C_6H_5CH=CHCH=CBrCO_2C_4H_9-t$	28 28
						C ₆ H ₅ CH=CHCHO		(44)	
						n-C ₁₅ H ₃₁ CHO	" " " " " " " " " " " " " " " " " " " "	n-C ₁₅ H ₃₁ CH=CBrCO ₂ C ₄ H ₉ -t (47)	28
CO ₂	CI	CH ₃	t-C ₄ H ₉	=	н	C₂H₅CHO	LDA, THF, -78°	$C_2H_5CH=CCICO_2C_4H_9-t$ (55) E:Z = 49:51	28
.02						i-C₃H₁CHO	•	$i-C_3H_7CH=CCICO_2C_4H_9-t$ (25)	28
.02						CH ₂ =CH-	: **	E: Z = 36:64 $CH_2 = CH(CH_2)_2CH = CCICO_2H_{g-1}$ (49)	28
.02						(CH ₂) ₂ CHO		E:Z = 34:66	
.02						i-C ₃ H ₇ COCH ₃	**	$i-C_3H_7C(CH_3)=CCICO_2C_4H_{9}-t$ (17) E:Z = 18:82	28
.02									-
207						^0		$CCICO_2C_4H_9-t$ (44)	28
.07						r ^o		CCICO ₂ C ₄ H ₅ -t (44)	22
						C _c H ₅ CHO	SW SW	$CCICO_2C_aH_9-t \qquad (44)$ $C_9H_9CH=CCICO_2C_4H_9-t \qquad (55)$	28

TABLE XVIII. FORMATION OF ALKENES WITH TWO HETEROATOM SUBSTITUENTS (Continued)

-			Silane			Carbonyl	Reaction	Product(s)	
X	Y	R	R1	R ²	R ³	Compound	Conditions	and Yield(s) (%)	Refs
5	S	CH ₃	CH ₃	CH ₃	н	CH ₂ O n-C ₄ H ₉ CHO n-C ₅ H ₁₁ CHO	n-C ₄ H ₉ Li, THF, -60°	CH ₂ =C(SCH ₃) ₂ (86) n-C ₄ H ₉ CH=C(SCH ₃) ₂ (80) n-C ₃ H ₁₁ CH=C(SCH ₃) ₂ (82) C(SCH ₃) ₂ (80)	308 308 313 308
						C ₀ H ₂ CHO n-C ₂ H ₁₅ CHO	"	$C_6H_5CH=C(SCH_3)_2$ (85) $n-C_6H_{13}CH=C(SCH_3)_2$ (84) $C(SCH_3)_2$ (54)	313 313 313
						C ₆ H ₅ COCH ₃ m,p-(CH ₃ O) ₂ C ₆ H ₃ -	,	$C_6H_5C(CH_3)=C(SCH_3)_2$ (57) $m,p-(CH_3O)_2C_6H_3CH=C(SCH_3)_2$	313 313
						CHO (C ₆ H ₅) ₂ CO	;	$(C_6H_5)_2C = C(SCH_3)_2$ (-) (58)	308, 33 313
					1		`	(CH ₃ S) ₂ C	
	S	CH ₃	-(CH ₂) ₅	Н		CH ₂ O	; P .	$ \begin{array}{c} $	308, 31
						СН₃СНО	n	(45–69) S	304, 30 308
						(CH ₃) ₂ CO	n	CHCH, (45–75)	303, 30 307, 30
						СН₃СОСН₂ОТНР		C(CH ₃) ₂ (—)	307
						CH ₂ =C(OCH ₃)- CHO	<u></u>	C(CH ₂)CH ₂ OTHP (70)	311
						(E)-CH ₃ CH=CH- CHO	n-C₄H ₉ Li, THF, −60°	$CHC(OCH_3) = CH_2$ $S S$ $(93)^d$	308
						n-C ₃ H ₇ CHO	"	CHCH=CHCH ₃ -(E) (67-75)	303, 30 308

 $C(C_3H_7-n)_2$

			Silane			Contravil	Donation	Draduat(a)	
x	Y	R	R1	R ²	R³	Carbonyl Compound	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
						(>-) ₂ co	n-C ₄ H ₉ Li, THF, 0°	(68)	239
						C₀H₃CHO	<i>n</i> -C ₄ H ₉ Li, THF, −60°	$ \begin{array}{c} C \left(\longrightarrow \right)_{7} \\ S \longrightarrow S \end{array} $ (68-95)	303, 304 308, 314
								CHC ₆ H ₅ (60-61)	308, 314
						٨.٥	n-C₄H₀Li, THF, 0°	, ș (64)	239

			TABLE XVIII.	FORM	ATION OF	ALKENES WITH TW	O HETEROATOM	SUBSTITUENTS (Continued)	
		_	Silane			Carbonyl	Reaction	Product(s)	
х	Y	R	R1	R ²	R ³	Compound C ₆ H ₅ CH=CHCHO	n-C ₄ H ₉ Li, THF,	and Yield(s) (%) (66-70)	Refs. 239, 303, 304
						O H N O	tte.	CHCH=CHC ₆ H ₅ (83)	464
						Adamantanone	w	S (95)	239
						СНО		(89)	309
						(C ₆ H ₅) ₂ CO	n-C₄H ₉ Li, THF, 0°	(75-78) S S	239, 303, 304
						**	n-C ₄ H ₉ Li, THF, -60°	" (87)	308, 314
						i X		(78) S S	308
						ОНС		(79)	310
						J'Y	_	(70)	463
							•		

E:Z = 86:14

208

TABLE XVIII. FORMATION OF ALKENES WITH TWO HETEROATOM SUBSTITUENTS (Continued)

					Silane			Carbonyl	Reaction	Product(s)	
х		Y	R	R1	R ²	R ³	Compound	Conditions	and Yield(s) (%)	Refs.	
							i-C₃H₁CHO	"	$R = i \cdot C_3 H_7$ (—) E: Z = 93:7	222	
							C ₆ H ₅ CHO	235	$R = C_6 H_5$ (—) E: Z = 90:10	222	
TMS	ISCC	l ₂ CH=	CH ₂				O	<i>n</i> -C₄H ₉ Li, THF, −90°	CCICH=CH ₂ (27)	274	
									OH CH ₂ CH=CCITMS (57)		
							n-C ₆ H ₁₃ CHO	**	n-C ₆ H ₁₃ CH=CCICH=CH ₂ (60) + n-C ₆ H ₁₃ CHOHCH ₂ CH=CCISi(CH ₃) ₃ (28)	274	
							C ₆ H ₅ CHO		$C_6H_5CH=CCICH=CH_2$ (26) + $C_6H_5CHOHCH_2CH=CCISi(CH_3)_3$ (67)	274	
V2							C ₆ H ₃ COCH ₃		$C_6H_5C(CH_3)$ =CCiCH=CH ₂ (43) + $C_6H_5C(CH_3)$ OHCH ₂ CH=CCISi(CH ₃) ₃ (8) + $C_6H_5C(CH_3)$ [OSi(CH ₃) ₃]CH ₂ - CH=CCISi(CH ₃) ₃ (13) + C_6H_5C [OSi(CH ₃) ₃]=CH ₂ (10) + $(C_6H_5)_2C$ (CH ₃)OSi(CH ₃) ₃ (19)	274	

^a Only the E isomer is isolated.
^b The yield is determined by GC analysis.
^c The product is obtained as a mixture of isomers.
^d The yield is determined by NMR.
^c Two equivalents of the carbanion are used.
^f The product is obtained as a mixture of diastereoisomers.
^g The product is not isolated.

TABLE XIX. RELATED REACTIONS WITH OTHER ELECTROPHILES

200	<u> </u>	Reaction	Product(s)	
Silane	Electrophile	Conditions	and Yield(s) (%)	Ref
C _o				
C ₆ H ₅ NHSi(CH ₃) ₃	SO ₂	1. n-C ₄ H ₉ Li, THF, 0°	$C_6H_5N=S=O$ (74)	227
p-CH ₃ C ₆ H ₄ NHSi(CH ₃) ₃	,,	,,	$p-CH_3C_6H_4N=S=O$ (90)	227
p-ClC ₆ H ₄ NHSi(CH ₃) ₃	**	**	$p\text{-ClC}_6H_4N=S=O$ (73)	227
m-CH3OC6H4NHSi(CH3)3	590	**	m-CH ₃ OC ₆ H ₄ N=S=O (64)	227
0,0-(CH3)2C6H3NHSi(CH3)3	**	**	$o,o-(CH_3)_2C_6H_3N=S=O$ (85)	227
o,o,p-(CH3)3C6H2NHSi(CH3)3	"	99	o, o, p-(CH ₃) ₃ C ₆ H ₂ N=S=O (85)	227
o,o-(i-C ₁ H ₇) ₂ C ₆ H ₃ NHSi(CH ₃) ₃	,,	**	$o_1, o_2 - (i - C_3 H_7)_2 C_6 H_3 NHSi(CH_3)_3$ (79)	227
o,p-(t-C4H9)2C6H3NHSi(CH3)3	**	23	$o, p-(t-C_4H_9)_2C_6H_3N=S=O$ (80)	227
C ₆ H ₁₁ NHSi(CH ₃) ₃	**	***	C ₄ H ₁₁ N=S=O (62)	227
[(CH ₃) ₃ Si] ₂ NH	C ₂ H ₅ NSO	n-C₄H ₉ Li, C ₆ H ₁₄	$C_2H_3N=S=NSi(CH_3)_3$ (9)	356
K	t-C₄H₀NSO	"	$t-C_4H_9N=S=NSi(CH_3)_3$ (65)	356
	C ₆ H ₅ NSO	22	$C_6H_5N=S=NSi(CH_3)_3$ (26)	356
C_1				
\wedge	t-C ₄ H ₉	1. n-C,H,Li, THF	$t-C_aH_9$ S— (54)	358
	⊕—осн,	2. CH ₃ CN, heat		
s_s	,			
Sign	t-C ₄ H ₉		t-C ₄ H ₉	
Si(CH ₃) ₃	C ₆ H ₅ CN	1. n-C₄H₀Li	\wedge	354
			s_s	
			R NHSi(CH ₁) ₃	
		2. H ₃ O+	$R = C_b H_5 (67)$	
	p-CH ₃ C ₆ H ₄ CN	.,	$R = p-CH_3C_6H_4$ (78)	354
	4-Cyanopyridine	**	R = 4-pyridyl (61)	354

	Silane	Electrophile	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
		√N CN	"	R = N-methyl-5-pyrryl (96)	
		CH ₃ o-Cyanothiophenol p-BrC ₆ H ₄ CN	31 31 31	$R = 2-\text{thiophenyl} (27)$ $R = p-\text{BrC}_6H_4 (48)$	354 354 354
212		t-C ₄ H ₉ CN SO ₂	<i>n</i> -C ₄ H ₉ Li, THF, -78°	s = s = 0 (80)	344
	$(C_6H_5S)_2CHSi(CH_3)_3$ $(C_6H_5SO_2CH[Si(CH_3)_3]_2$	C ₆ H ₅ OCH ₃	1. n-C ₄ H ₉ Li, THF 2. CH ₃ CN, heat	$(C_bH_5S)_2C=S=O$ (80) C_bH_5 $SO_2C_bH_5$ (70)	344 358
	p-CH ₃ C ₆ H ₄ SO ₂ CH[Si(CH ₃) ₃] ₂	C ₆ H ₅	**	Si(CH ₃) ₃ C ₆ H ₅ SO ₂ C ₆ H ₄ CH ₃ -p (76)	358
	O S Si(CH₃)₃	C₀H₅CN	 C₄H₀Li, THF, −78° CH₃I H₃O⁺ 	C ₆ H ₅ Si(CH ₃) ₃ (45) CH ₃ C ₆ H ₅	353
	C_2 $C_6H_5 - S - CH_3$ R R $C_8H_5 - H$	SO ₂	1. <i>n</i> -C ₄ H ₉ Li, THF, -78° 2. CH ₂ =C(CH ₃)C(CH ₃)=CH ₂	C ₆ H ₅	344
	$R = CH_3$ $R = p-CH_3C_6H_4$			$R = CH_3$ (40) $R = p - CH_3C_6H_4$ (60)	344
	C_3^e CH_2 = $C(SO_2C_6H_3)Si(CH_3)_3$ C_4		CH₃Li, TMEDA, THF, −78°	$CH_3CH_2C(=S=O)SO_2C_6H_5$ (74) ^b	128
213	N-S NHTBDMS	p-CIC ₆ H ₄ CN	n-C₄H ₉ Li, THF	N—S NHTBDMS (64)	355
	C ₆ CH ₂ Si(CH ₃) ₃	R'N=CRAr	1. LDA, THF, -75° 2. NH ₄ Cl, H ₂ O R R R Ar C ₆ H ₅ H C ₆ H ₅ P-ClC ₆ H ₄ H C ₆ H ₅ C ₆ H ₅ H C ₆ H ₅ CH ₅ H C ₆ H ₅ CH ₅ H C ₆ H ₅ CH ₅	CH=CRAr (84) $E:Z = 100:0$ (32) $E:Z = 100:0$ (54) $E:Z = 100:0$ CH (68) ^c (10) ^d $E:Z = 99.6:0.4$ (5) ^d (10) ^d $E:Z = 87.5:12.5$	346 346 346 346 346 346

TABLE XIX. RELATED REACTIONS WITH OTHER ELECTROPHILES (Continued)

Silane	Electrophile	Reaction Conditions	Product(s) and Yield(s) (%)	Refs.
C ₁₄ * Si(CH ₃) ₃	**	n-C₄H₃Li, TMEDA, THF, –78°	$S = O $ $C_4H_9 - n $ (30)	128
	v	t-C₄H ₉ Li, TMEDA, THF, −78°	S (33)	128
			C_4H_{9} - t	

- This compound is derived from the α-silylcarbanion through addition of the alkyllithium to the alkene.
 The yield is determined by NMR.
 The isomer ratio is not given.
 The yield is determined by GC.

- 'The silane is prepared in situ.

8. Acknowledgments

I wish to thank my co-workers who have spent many hours working on the Peterson reaction. In particular, I express my gratitude to Ms. Susan Mole and Drs. Michael East and Shyamal Parekh for their encouragement and critical discussions during the preparation of this manuscript. Finally, I am indebted to Glen Cooke, who helped with some of the literature searches.

References

- 1. Asymmetric Synthesis, Vols. 2 and 3, J. D. Morrison, Ed., Academic Press, New York, 1983–1984.
- 2. F. C. Whitmore, L. H. Sommer, J. Gold, and R. E. van Strein, J. Am. Chem. Soc., **69**, 1551 (1947).
- 3. D. J. Peterson, J. Org. Chem., 33, 780 (1968).
- 4. F. A. Carey and J. R. Toler, J. Org. Chem., 41, 1966 (1976).
- 5. P. D. George, M. Prober, and J. R. Elliott, Chem. Rev., **56**, 1065 (1956).
- 6. I. Fleming, Chem. Ind. (London), 1975, 449.
- 7. P. F. Hudrlik, in *New Applications of Organometallic Reagents in Organic Synthesis*, D. Seyferth, Ed., Elsevier, Amsterdam, 1976, pp. 127–159.
- 8. E. W. Colvin, Chem. Soc. Rev., 7, 15 (1978).
- 9. I. Fleming, Comprehensive Organic Chemistry, Vol. 3, D. H. R. Barton and W. Ollis, Eds., Pergamon, Oxford, 1979, pp. 541ff.
- 10. I. Fleming, Chimica, **34**, 265 (1980).
- 11. P. Magnus, Aldrichimica Acta, **13**, 43 (1980).
- 12. L. Birkofer and O. Stuhl, Top. Curr. Chem., 88, 33 (1980).
- 13. I. Fleming, Chem. Soc. Rev., **10**, 83 (1981).
- 14. E. W. Colvin, Silicon in Organic Synthesis, Butterworths, London, 1981.
- 15. L. A. Paquette, Science, 217, 27 (1982).
- 16. D. J. Ager, Chem. Soc. Rev., 11, 493 (1982).
- 17. P. F. Hudrlik and A. M. Hudrlik, *Petrarch Catalog*, Petrarch Chemical Company, 1982, p. 14.
- P. D. Magnus, T. Sarkar, and S. Djuric, in Comprehensive Organometallic Chemistry, Vol. 7, G. Wilkinson, F. G. A. Stone, and E. W. Abel, Eds., Pergamon, Oxford, 1982, pp. 515ff.
- 19. W. P. Weber, Silicon Reagents for Organic Synthesis—Concepts in Organic Chemistry, Vol. **14**, Springer-Verlag, New York, 1983.
- 20. P. Brownbrige, Synthesis, 1983, 85.
- 21. R. Anderson, Synthesis, 1985, 717.
- 22. M. Lalonde and T. H. Chan, Synthesis, 1985, 817.
- 23. T.-H. Chan, Acc. Chem Res., **10**, 442 (1977).
- 24. D. J. Ager, Synthesis, 1984, 384.
- 25. C. Trindle, J.-T. Hwang, and F. A. Carey, J. Org. Chem., **38**, 2664 (1973).
- 26. P. F. Hudrlik and D. Peterson, Tetrahedron Lett., 1974, 1133.
- 27. P. F. Hudrlik and D. Peterson, J. Am. Chem. Soc., 97, 1464 (1975).

- 28. T. H. Chan and J.-S. Li, J. Chem. Soc., Chem. Commun., 1982, 969.
- 29. C. M. Robbins and G. H. Whitham, J. Chem. Soc., Chem. Commun., **1976**, 697.
- 30. A. P. Davis, G. J. Hughes, P. R. Lowndes, C. M. Robbins, E. J. Thomas, and G. H. Whitham, J. Chem. Soc., Perkin Trans. 1, **1981**, 1934.
- 31. G. Nagendrappa, Tetrahedron, 38, 2429 (1982).
- 32. W. K. Musker and G. L. Larson, Tetrahedron Lett., 1968, 3481.
- 33. I. Fleming and B.-W. Au-Yeung, Tetrahedron, **37**, Suppl. No. 1, 13 (1981).
- 34. K. Yamamoto and Y. Tomo, Tetrahedron Lett., **24**, 1997 (1983).
- 35. P. F. Hudrlik, A. M. Hudrlik, and A. K. Kulkarni, J. Am. Chem. Soc., **104**, 6809 (1982).
- 36. K. Yamamoto, T. Kimura, and Y. Tomo, Tetrahedron Lett., **25**, 2155 (1984).
- 37. A. R. Bassindale, R. J. Ellis, and P. G. Taylor, Tetrahedron Lett., **25**, 2705 (1984).
- 38. A. R. Bassindale, R. J. Ellis, J. C.-Y. Lau, and P. G. Taylor, J. Chem. Soc., Perkin Trans. 2, **1986**, 593.
- 39. K. Tamao, M. Kumada, and K. Maeda, Tetrahedron Lett., **23**, 321 (1984).
- 40. H. Taguchi, K. Shimoji, H. Yamamoto, and H. Nozaki, Bull. Chem. Soc. Jpn., 47, 2529 (1974).
- 41. M. Larcheveque and A. Debal, J. Chem. Soc., Chem. Commun., 1981, 877.
- 42. G. L. Larson, F. Quiroz, and J. Suarez, Synth. Commun., **13**, 833 (1983).
- 43. G. L. Larson, C. F. de Kaifer, R. Seda, L. E. Torres, and J. R. Ramirez, J. Org. Chem., **49**, 3385 (1984).
- 44. J. A. Miller and G. Zweifel, J. Am. Chem. Soc., 103, 6217 (1981).
- 45. M. J. Crimmin, P. J. O'Hanlon, and N. H. Rogers, J. Chem. Soc., Perkin Trans. 1, **1985**, 541.
- 46. R. K. Boeckman and R. L. Chinn, Tetrahedron Lett., 26, 5005 (1985).
- 47. K. Yamamoto, Y. Tomo, and S. Suzuki, Tetrahedron Lett., **21**, 2861 (1980).
- 48. A. E. Greene, C. Le Drian, and P. Crabbe, J. Org. Chem., **45**, 2713 (1980).
- 49. M. Larcheveque, Ch. Lequeut, A. Debal, and J. Y. Lallemand, Tetrahedron Lett., **22**, 1595 (1981).
- 50. L. Strekowski, M. Visnick, and M. A. Battiste, Tetrahedron Lett., **25**, 5603 (1984).

- 51. S. G. Davies, R. J. C. Easton, J. C. Walker, and P. Warner, Tetrahedron, **42**, 175 (1986).
- 52. H.-U. Reissig and I. Bohm, J. Am. Chem. Soc., **104**, 1735 (1982).
- 53. P. F. Hudrlik, A. M. Hudrlik, and A. K. Kulkarni, J. Am. Chem. Soc., **107**, 4260 (1985).
- 54. D. J. Cram and F. A. Abd Elhafez, J. Am. Chem. Soc., 74, 5828 (1952).
- 55. P. F. Hudrlik and D. Peterson, Tetrahedron Lett., 1972, 1785.
- 56. K. Utimoto, M. Obayashi, and H. Nozaki, J. Org. Chem., **41**, 2941 (1976).
- 57. M. Obayashi, K. Utimoto, and H. Nozaki, Bull. Chem. Soc. Jpn., **52**, 1760 (1979).
- 58. P. F. Hudrlik and A. K. Kulkarni, J. Am. Chem. Soc., 103, 6251 (1981).
- 59. D. L. J. Clive, C. G. Russell, and S. C. Suri, J. Org. Chem., **47**, 1632 (1982).
- 60. R. A. Ruden and B. L. Gaffney, Synth. Commun., 5, 15 (1975).
- 61. I. Matsuda, H. Okada, S. Sato, and Y. Izumi, Tetrahedron Lett., **25**, 3879 (1984).
- 62. V. C. de Maldonado and G. L. Larson, Synth. Commun., **13**, 1163 (1983).
- 63. D. Hernandez and G. L. Larson, J. Org. Chem., 49, 4285 (1984).
- 64. J. J. Eisch and J. T. Trainor, J. Org. Chem., 28, 2870 (1963).
- 65. P. F. Hudrlik, C.-N. Wan, and G. P. Withers, Tetrahedron Lett., **1976**, 1449.
- 66. P. F. Hudrlik, R. N. Misra, G. P. Withers, A. M. Hudrlik, R. J. Rona, and J. P. Arcoleo, Tetrahedron Lett., **1976**, 1453.
- 67. P. F. Hudrlik, J. P. Arcoleo, R. H. Schwartz, R. N. Misra, and R. J. Rona, Tetrahedron Lett., **1977**, 591.
- 68. P. F. Hudrlik, A. M. Hudrlik, R. J. Rona, R. N. Misra, and G. P. Withers, J. Am. Chem. Soc., **99**, 1993 (1977).
- 69. P. F. Hudrlik and C.-N. Wan, Synth. Commun., **9**, 333 (1979).
- 70. M. C. Croudace and N. E. Shore, J. Org. Chem., **46**, 5357 (1981).
- 71. H. Beisswenger and M. Hanck, Tetrahedron Lett., 23, 403 (1982).
- 72. P. F. Hudrlik, A. M. Hudrlik, R. N. Misra, D. Peterson, G. P. Withers, and A. K. Kulkarni, J. Org. Chem., 45, 4444 (1980).
- 73. P. F. Hudrlik, D. Peterson, and R. J. Rona, J. Org. Chem., **40**, 2263 (1975).
- 74. M. J. Prior and G. H. Whitham, J. Chem. Soc., Perkin Trans. 1, **1986**, 683.
- 75. P. E. Sonnet, Tetrahedron, **36**, 557 (1980).

- 76. H. Gilman, D. Aoki, and D. Wittenberg, J. Am. Chem. Soc., **81**, 1108 (1950).
- 77. M. T. Reetz and M. Plachky, Synthesis, **1976**, 199.
- 78. P. B. Dervan and M. A. Shippey, J. Am. Chem. Soc., **98**, 1265 (1976).
- 79. M. Koreeda and M. A. Cuifolini, J. Am. Chem. Soc., **104**, 2308 (1982).
- 80. F. Sato, Y. Suzuki, and M. Sato, Tetrahedron Lett., 23, 4589 (1982).
- 81. F. Sato, H. Uchiyama, K. Iida, Y. Kobayashi, and M. Sato, J. Chem. Soc., Chem. Commun., **1983**, 921.
- 82. Y. Yamakado, M. Ishigura, N. Ikeda, and H. Yamamoto, J. Am. Chem. Soc., **103**, 5568 (1981).
- 83. M. E. Jung and J. P. Hudspeth, J. Am. Chem. Soc., **102**, 2463 (1980).
- 84. G. L. Larson, J. A. Prieto, and A. Hernandez, Tetrahedron Lett., **22**, 1575 (1981).
- 85. K. Mikami, T. Maeda, and T. Nakai, Tetrahedron Lett., 27, 4189 (1986).
- P. F. Hudrlik, A. M. Hudrlik, G. Napendrappa, T. Yimenu, E. T. Zellers, and E. Chin, J. Am. Chem. Soc., 102, 6894 (1980).
- 87. D. J. Peterson, Organomet. Chem. Rev. (A), **7**, 358 (1972).
- 88. A. Krief, Tetrahedron, **36**, 2531 (1980).
- P. v. R. Schleyer, T. Clark, A. J. Kos, G. W. Spitznagel, C. Rohde, D. Arad, K. N. Houk, and N. G. Rondan, J. Am. Chem. Soc., 106, 6467 (1984).
- 90. D. J. Peterson, J. Organomet. Chem., **9**, 373 (1967).
- 91. T. H. Chan and E. Chang, J. Org. Chem., **39**, 3264 (1974).
- 92. T. H. Chan, E. Chang, and E. Vinokur, Tetrahedron Lett., 1970, 1137.
- 93. A. G. Brook, J. M. Duff, and D. G. Anderson, Can. J. Chem., **48**, 561 (1970).
- 94. W. H. Richardson and S. A. Thomson, J. Org. Chem., **50**, 1803 (1985).
- 95. T. J. Barton and C. R. Tully, J. Organomet. Chem., **172**, 11 (1979).
- 96. T. Konakahara and Y. Takagi, Synthesis, 1979, 192.
- 97. B. Halton, C. J. Randall, and P. J. Stang, J. Am. Chem Soc., **106**, 6108 (1984).
- 98. A. H. Davidson, I. Fleming, J. I. Grayson, A. Pearce, R. L. Snowden, and S. Warren, J. Chem. Soc., Perkin Trans. 1, **1977**, 550.
- 99. L. Horner, H. Hoffmann, H. G. Wippel, and G. Klahre, Chem. Ber., **92**, 2499 (1959).
- 100. I. Fleming and A. Pearce, J. Chem. Soc., Perkin Trans. 1, **1981**, 251.
- 101. J. A. Marshall and R. E. Conrow, J. Am. Chem. Soc., **105**, 5679 (1983).
- 102. C. R. Hauser and C. R. Hance, J. Am. Chem. Soc., **74**, 5091 (1952).
- 103. M. J. Carter and I. Fleming, J. Chem. Soc., Chem. Commun., 1976, 679.

- 104. D. J. Morgans and G. Stork, Tetrahedron Lett., 1979, 1959.
- 105. A. Hosomi, H. Iguchi, J.-i. Sasaki, and H. Sakurai, Tetrahedron Lett., 23, 551 (1982).
- 106. H. Sakurai, A. Hosomi, M. Saito, K. Sasaki, H. Iguchi, J.-i. Sasaki, and Y. Araki, Tetrahedron, **39**, 883 (1983).
- 107. A. P. Marchand and R. Kaya, J. Org. Chem., 48, 5392 (1983).
- 108. T. Mandai, M. Takeshita, M. Kawada, and J. Otera, Chem. Lett., **1984**, 1259.
- 109. A. Oliva and A. Molinari, Synth. React. Inorg., Metal–Org. Chem., **14**, 253 (1984).
- 110. W. C. Still, J. Am. Chem. Soc., 101, 2493 (1979).
- 111. S. P. Sethi, R. Sterzycki, W. W. Sy, R. Marini–Bettolo, T. Y. R. Tsai, and K. Weisner, Heterocycles, **14**, 23 (1980).
- 112. K. Wiesner, T. Y. R. Tsai, G. I. Dmitrienko, and K. P. Nambiar, Can. J. Chem., **54**, 3307 (1976).
- 113. M. B. Gewali and R. C. Ronald, J. Org. Chem., 47, 2792 (1982).
- 114. G. L. Larson and J. A. Prieto, Tetrahedron, 39, 855 (1983).
- 115. A. B. Smith and P. J. Jarvis, J. Org. Chem., 47, 1845 (1982).
- 116. R. K. Boeckman and S. M. Silver, Tetrahedron Lett., 1973, 3497.
- 117. A. Guerriero, F. Pietra, M. Cavazza, and F. Del Cima, J. Chem. Soc., Perkin Trans. 1, **1982**, 979.
- 118. C.-N. Hsiao and H. Shechter, Tetrahedron Lett., 25, 1219 (1984).
- 119. J.-P. Pillot, J. Dunoguès, and R. Calas, J. Chem. Res. (S), **1977**, 268.
- 120. R. T. Taylor and J. G. Galloway, J. Organomet. Chem., **220**, 295 (1981).
- 121. S. C. Howell, S. V. Ley, M. Mahon, and P. A. Worthington, J. Chem. Soc., Chem. Commun., **1981**, 507.
- 122. D. M. Hollinshead, S. C. Howeel, S. V. Ley, M. Mahon, N. M. Ratcliffe, and P. A. Worthington, J. Chem Soc., Perkin Trans. 1, **1983**, 1579.
- 123. M. Demuth, Helv. Chim. Acta, 61, 3136 (1978).
- 124. M. Ochiai, E. Fujita, M. Arimoto, and H. Yamaguchi, Chem. Pharm. Bull., 33, 989 (1985).
- 125. L. F. Cason and H. G. Brooks, J. Am. Chem. Soc., 74, 4582 (1952).
- 126. L. F. Cason and H. G. Brooks, J. Org. Chem., 19, 1278 (1954).
- 127. K. Tamao, R. Kanatani, and M. Kumada, Tetrahedron Lett., **25**, 1913 (1984).
- 128. M. van der Leij and B. Zwanenburg, Tetrahedron Lett., 1978, 3383.
- 129. G. R. Buell, R. Corriu, C. Guerin, and L. Spialter, J. Am. Chem. Soc., **92**, 7424 (1970).
- 130. K. Tamao, R. Kanatani, and M. Kumada, Tetrahedron Lett., 25, 1905

- (1984).
- 131. R. Yamaguchi, H. Kawasaki, and M. Kawanisi, Synth. Commun., **12**, 1027 (1982).
- 132. R. B. Miller, M. I. Al-Hassan, and G. McGarvey, Synth. Commun., **13**, 969 (1983).
- 133. R. B. Miller and M. I. Al-Hassan, J. Org. Chem., 48, 4113 (1983).
- 134. W. Mychajlowskij and T. H. Chan, Tetrahedron Lett., 1976, 4439.
- 135. T. H. Chen, W. Mychajlowskij, B. S. Ong, and D. N. Harpp, J. Organomet. Chem., **107**, C1 (1976).
- 136. L. A. Paquette, G. J. Wells, K. A. Horn, and T.-H. Yan, Tetrahedron, **39**, 913 (1983).
- 137. G. Stork and B. Ganem, J. Am. Chem. Soc., 95, 6152 (1973).
- 138. K. E. Koenig and W. P. Weber, J. Am. Chem. Soc., **95**, 3416 (1973).
- 139. K. Utimoto, M. Kitai, and H. Nozaki, Tetrahedron Lett., 1975, 2825.
- 140. E. Dunach, R. L. Halteman, and K. P. C. Vollhardt, J. Am. Chem. Soc., 107, 1664 (1985).
- 141. S. R. Wilson and M. F. Price, J. Am. Chem. Soc., **104**, 1124 (1982).
- 142. T. Hiyama, A. Kanakura, Y. Morizawa, and H. Nozaki, Tetrahedron Lett., **23**, 1279 (1982).
- 143. S. Halazy, W. Dumont, and A. Krief, Tetrahedron Lett., 22, 4737 (1981).
- 144. J. W. Connolly and G. Urry, Inorg. Chem., 2, 645 (1963).
- 145. L. H. Sommer, J. Am. Chem. Soc., **71**, 2746 (1949).
- 146. L. H. Sommer and F. C. Whitmore, J. Am. Chem. Soc., 68, 485 (1946).
- 147. M. T. Reetz, J. Westermann, R. Steinbach, B. Wenderoth, R. Peter, R. Ostarek, and S. Maus, Chem. Ber., **118**, 1421 (1985).
- 148. P. J. Kocienski, Tetrahedron Lett., **21**, 1559 (1980).
- 149. D. J. Ager and R. C. Cookson, Tetrahedron Lett., 21, 1677 (1980).
- 150. D. J. Ager, J. Chem. Soc., Perkin Trans. 1, 1983, 1131.
- 151. D. J. Ager, Tetrahedron Lett., **22**, 587 (1981).
- 152. D. J. Ager, Tetrahedron Lett., 24, 95 (1983).
- 153. D. J. Ager, J. Chem. Soc., Perkin Trans. 1, 1986, 195.
- 154. D. J. Ager, Tetrahedron Lett., 22, 2923 (1981).
- 155. T. Cohen, J. P. Sherbine, J. R. Matz, R. R. Hutchings, B. M. McHenry, and P. R. Willey, J. Am. Chem. Soc., **106**, 3245 (1984).
- 156. D. J. Ager, Tetrahedron Lett., **24**, 419 (1983).
- 157. D. J. Ager, J. Chem. Soc., Perkin Trans. 1, 1986, 183.
- 158. T. Cohen and J. R. Matz, Synth. Commun., **10**, 311 (1980).
- 159. C. G. Screttas and M. Micha-Screttas, J. Org. Chem., **44**, 713 (1979).

- 160. T. Cohen, W. M. Daniewski, and R. B. Weisenfeld, Tetrahedron Lett., 1978, 4665.
- 161. L. A. Paquette, K. A. Horn, and G. J. Wells, Tetrahedron Lett., **23**, 259 (1982).
- 162. L. A. Paquette, Chem. Rev., 86, 733 (1986).
- 163. C. Rucker, Tetrahedron Lett., 25, 4349 (1984).
- 164. T. Takeda, K. Ando, A. Mamada, and T. Fujiwara, Chem. Lett., **1985**, 1149.
- 165. W. Dumont and A. Krief, Angew. Chem., Int. Ed. Engl., 15, 161 (1976).
- 166. H. Sakurai, K.-i. Nishiwaki, and M. Kira, Tetrahedron Lett., 1973, 4193.
- 167. D. E. Seitz and A. Zapata, Tetrahedron Lett., 21, 3451 (1980).
- 168. D. E. Seitz and A. Zapata, Synthesis, 1981, 557.
- 169. J.-F. Biellman and J.-B. Ducep, Org. React., 27, 1 (1982).
- 170. B.-T. Grobel and D. Seebach, Chem. Ber., 110, 867 (1977).
- 171. T. H. Chan and W. Mychajlowskij, Tetrahedron Lett., 1974, 171.
- 172. T. H. Chan, W. Mychajlowskij, B. S. Ong, and D. N. Harpp, J. Org. Chem., 43, 1526 (1978).
- 173. R. Corriu and J. Masse, J. Organomet. Chem., **57**, C5 (1973).
- 174. E. Ehlinger and P. Magnus, J. Am. Chem. Soc., **102**, 5004 (1980).
- 175. R. J. P. Corriu, J. Masse, and D. Samate, J. Organomet. Chem., **93**, 71 (1975).
- 176. P. W. K. Lau and T. H. Chan., Tetrahedron Lett., **1978**, 2383.
- 177. H. Yasuda, T. Nishi, S. Miyanaga, and A. Nakamura, Organometallics, **4**, 359 (1985).
- 178. C. H. Chen, J. J. Doney, G. A. Reynolds, and F. D. Salva, J. Org. Chem., **48**, 2757 (1983).
- 179. E. J. Corey and C. Rucker, Tetrahedron Lett., 23, 719 (1982).
- 180. J. J. Doney and C. H. Chen, Synthesis, 1983, 491.
- 181. A. W. P. Jarvie, Organomet. Chem. Rev. (A), **6**, 153 (1970).
- 182. B. A. Pearlman, J. M. McNamara, I. Hasan, S. Hatakeyama, H. Sekizaki, and Y. Kishi, J. Am. Chem. Soc., **103**, 4248 (1981).
- 183. W. K. Musker, J. Org. Chem., **31**, 4237 (1966).
- 184. S. Sato, I. Matsuda, and Y. Izumi, Tetrahedron Lett., 24, 3855 (1983).
- 185. S. Sato, H. Okada, I. Matsuda, and Y. Izumi, Tetrahedron Lett., **25**, 769 (1984).
- 186. E. J. Corey and C. Rucker, Tetrahedron Lett., **25**, 4345 (1984).
- 187. I. Kuwajima and R. Takeda, Tetrahedron Lett., 22, 2381 (1981).
- 188. T. Kaiho, S. Masamune, and T. Toyoda, J. Org. Chem., 47, 1612 (1982).

- 189. N. Petragnani and M. Yonashiro, Synthesis, 1982, 521.
- 190. C. R. Hance and C. R. Hauser, J. Am. Chem. Soc., 75, 994 (1953).
- 191. J. R. Gold, L. H. Sommer, and F. C. Whitmore, J. Am. Chem. Soc., **70**, 2874 (1948).
- 192. R. J. Fessenden and J. S. Fessenden, J. Org. Chem., 32, 3535 (1967).
- 193. M. W. Rathke and D. F. Sullivan, Synth. Commun., **3**, 67 (1973).
- 194. C. Ainsworth, F. Chen, and Y.-N. Kuo, J. Organomet. Chem., **46**, 59 (1972).
- 195. P. F. Hudrlik, D. Peterson, and D. Chou, Synth. Commun., **5**, 359 (1975).
- 196. G. L. Larson and L. M. Fuentes, J. Am. Chem. Soc., **103**, 2418 (1981).
- 197. L. Birkofer, A. Ritter, and H. Wieden, Chem. Ber., 95, 971 (1962).
- 198. K. Shimoji, H. Taguchi, K. Oshima, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc., **96**, 1620 (1974).
- 199. J. W. Lyga and J. A. Secrist, J. Org. Chem., 44, 2941 (1979).
- 200. C. Le Drian and A. E. Greene, J. Am. Chem. Soc., 104, 5473 (1982).
- 201. S. L. Hartzell, D. F. Sullivan, and M. W. Rathke, Tetrahedron Lett., **1974**, 1403.
- 202. R. S. Budhram, V. A. Palaniswamy, and E. J. Eisenbraun, J. Org. Chem., **51**, 1402 (1986).
- 203. S. L. Hartzell and M. W. Rathke, Tetrahedron Lett., 1976, 2757.
- 204. O. Tsuge, S. Kanemasa, and Y. Ninomuja, Chem. Lett., **1984**, 1993.
- 205. D. B. Tulshian and B. Fraser-Reid, J. Am. Chem. Soc., 103, 474 (1981).
- 206. J. Szychowski and D. B. MacLean, Can. J. Chem., **57**, 1631 (1979).
- 207. H. Nishiyama, K. Sakuta, and K. Itoh, Tetrahedron Lett., **25**, 2487 (1984).
- 208. G. L. Larson and D. Hernandez, Tetrahedron Lett., 23, 1035 (1982).
- 209. G. L. Larson, I. M. Lopez-Cepero, and L. E. Torres, Tetrahedron Lett., **25**, 1673 (1984).
- 210. G. L. Larson, D. Hernandez, I. M. de Lopez-Cepero, and L. E. Torres, J. Org. Chem., **50**, 5260 (1985).
- 211. R. T. Taylor and R. A. Cassell, Synthesis, **1982**, 672.
- 212. P. A. Grieco, C.-L. J. Wang, and S. D. Burke, J. Chem. Soc., Chem. Commun., **1975**, 537.
- 213. D. H. Lucast and J. Wemple, Tetrahedron Lett., 1977, 1103.
- 214. J. A. Miller and G. Zweifel, Synthesis, **1981**, 288.
- 215. R. P. Woodbury and M. W. Rathke, J. Org. Chem., 43, 881 (1978).
- 216. R. P. Woodbury and M. W. Rathke, J. Org. Chem., **42**, 1688 (1977).
- 217. R. P. Woodbury and M. W. Rathke, J. Org. Chem., 43, 1947 (1978).

- 218. S. Kano, T. Ebata, K. Funaki, and S. Shibuya, Synthesis, 1978, 746.
- 219. H.-J. Bergmann, R. Mayrhofer, and H.-H. Otto, Arch. Pharm., **319**, 203 (1986).
- 220. D. J. Kempf, K. D. Wilson, and P. Beak, J. Org. Chem., 47, 1610 (1982).
- 221. P. Beak, D. J. Kempf, and K. D. Wilson, J. Am. Chem. Soc., **107**, 4745 (1985).
- 222. K. Sachdev, Tetrahedron Lett., 1976, 4041.
- 223. I. Ojima and M. Kumagai, Tetrahedron Lett., 1974, 4005.
- 224. I. Matsuda, S. Murata, and Y. Ishii, J. Chem. Soc., Perkin Trans. 1, **1979**, 26.
- 225. K. Tomioka and K. Koga, Tetrahedron Lett., 25, 1599 (1984).
- 226. C. Kruger, E. G. Rochow, and U. Wannagat, Chem. Ber., **96**, 2132 (1963).
- 227. P. A. T. W. Porskamp and B. Zwanenburg, Synthesis, 1981, 368.
- 228. N. Duffaut and J.-P. Dupin, Bull. Soc. Chim. Fr., 1966, 3205.
- 229. W. Verboom, M. R. J. Hamzink, D. N. Reinhoudt, and R. Visser, Tetrahedron Lett., **25**, 4309 (1984).
- 230. R. J. P. Corriu, V. Huynh, J. J. E. Moreau, and M. Pataud-Sat, Tetrahedron Lett., **23**, 3257 (1982).
- 231. E. J. Corey and D. Enders, Tetrahedron Lett., 1976, 3.
- 232. E. J. Corey, D. Enders, and M. G. Bock, Tetrahedron Lett., 1976, 7.
- 233. E. J. Corey, L. O. Wiegel, D. Floyd, and M. G. Bock, J. Am. Chem. Soc., **100**, 2916 (1978).
- 234. E. J. Corey, L. O. Wiegel, A. R. Chamberlin, and B. Lipschultz, J. Am. Chem. Soc., **102**, 1439 (1980).
- 235. R. H. Schlessinger, M. A. Poss, S. Richardson, and P. Lin, Tetrahedron Lett., **26**, 2391 (1985).
- 236. E. J. Corey and D. Enders, Chem. Ber., **111**, 1362 (1978).
- 237. U. Schollkopf and H.-U. Scholz, Synthesis, 1976, 271.
- 238. T. Hirao, A. Yamada, K.-i. Hayashi, Y. Ohshiro, and T. Agawa, Bull. Chem. Soc. Jpn., **55**, 1163 (1982).
- 239. F. A. Carey and A. S. Court, J. Org. Chem., **37**, 939 (1972).
- 240. D. Seebach, R. Burstinghaus, B.-T. Grobel, and M. Kolb, Justus Liebigs Ann. Chem., **1977**, 830.
- 241. D. J. Ager, J. Org. Chem., 49, 168 (1984).
- 242. D. J. Ager and M. B. East, J. Org. Chem., **51**, 3983 (1986).
- 243. T. Agawa, M. Ishikawa, M. Komatsu, and Y. Oshiro, Chem. Lett., **1980**, 335.
- 244. T. Agawa, M. Ishikawa, M. Komatsu, and Y. Oshiro, Bull. Chem. Soc.

- Jpn., 55, 1205 (1982).
- 245. F. A. Carey and O. Hernandez, J. Org. Chem., 38, 2670 (1973).
- 246. M. Cinquini, F. Cozzi, and L. Raimondi, Gazz. Chim. Ital., 1986, 185.
- 247. C. Fleischmann and E. Zbiral, Tetrahedron, 34, 317 (1978).
- 248. F. Cooke, P. Magnus, and G. L. Bundy, J. Chem. Soc., Chem. Commun., **1978**, 714.
- 249. P. D. Magnus, Tetrahedron, 33, 2019 (1977).
- 250. D. J. Ager, J. Chem. Soc., Chem. Commun., 1984, 486.
- 251. S. V. Ley and N. S. Simpkins, J. Chem. Soc., Chem. Commun., **1983**, 1281.
- 252. J. J. Eisch, M. Behrooz, and S. K. Dua, J. Organomet. Chem., **285**, 121 (1985).
- 253. D. Craig, S. V. Ley, N. S. Simpkins, G. H. Whitham, and M. J. Prior, J. Chem. Soc., Perkin Trans. 1, 1985, 1949.
- 254. R. Block, D. Hassan, and X. Mandard, Tetrahedron Lett., **24**, 4691 (1983).
- 255. J. V. Comasseto, J. Organomet. Chem., **253**, 131 (1983).
- 256. D. van Ende, W. Dumont, and A. Kreif, J. Organomet. Chem., **149**, C10 (1978).
- 257. W. Dumont, D. van Ende, and A. Krief, Tetrahedron Lett., 1979, 485.
- 258. H. J. Reich, M. C. Clark, and W. W. Willis, J. Org. Chem., **47**, 1618 (1982).
- 259. B.-T. Grobel and D. Seebach, Angew. Chem., Int. Ed. Engl., **13**, 83 (1974).
- 260. D. J. Ager, G. E. Cooke, M. B. East, S. J. Mole, A. Rampersaud, and V. J. Webb, Organometallics, **5**, 1906 (1986).
- 261. D. Seyferth and S. O. Grim, J. Am. Chem. Soc., **83**, 1610 (1961).
- 262. H. Gilman and R. A. Tomasi, J. Org. Chem., **27**, 3647 (1962).
- 263. F. Plenat, Tetrahedron Lett., 22, 4705 (1981).
- 264. H. Paulsen and W. Bartsch, Chem. Ber., **108**, 1732 (1975).
- 265. K. Itoh, H. Hayashi, M. Fukui, and Y. Ishii, J. Organomet. Chem., **78**, 339 (1974).
- 266. R. Appel, P. Folling, B. Josten, M. Siray, V. Winkhaus, and F. Knoch, Angew. Chem., Int. Ed. Engl., 23, 619 (1984).
- 267. F. Cooke and P. Magnus, J. Chem. Soc., Chem. Commun., 1977, 513.
- 268. C. Burford, F. Cooke, E. Ehlinger, and P. Magnus, J. Am. Chem. Soc., **99**, 4536 (1977).
- 269. C. Burford, F. Cooke, G. Roy, and P. Magnus, Tetrahedron, 39, 867 (1983).

- 270. P. Magnus and G. Roy, J. Chem. Soc., Chem. Commun., 1978, 297.
- 271. T. Kauffmann, R. Konig, and M. Wensing, Tetrahedron Lett., **25**, 637 (1984).
- 272. T. Kauffmann, R. Konig, R. Kreigesmann, and M. Wensing, Tetrahedron Lett., **25**, 641 (1984).
- 273. A. Degl'Innocenti, S. Pike, D. R. M. Walton, G. Seconi, A. Ricci, and M. Fiorenza, J. Chem. Soc., Chem. Commun., **1980**, 1201.
- 274. D. Seyferth and R. E. Mammarella, J. Organomet. Chem., **156**, 279 (1978).
- 275. B. Martel and M. Varache, J. Organomet. Chem., **40**, C53 (1972).
- 276. P. Magnus and G. Roy, J. Chem. Soc., Chem. Commun., 1979, 822.
- 277. P. Magnus and G. Roy, Organometallics, 1, 553 (1982).
- 278. A. S. Kende and T. J. Blacklock, Tetrahedron Lett., **21**, 3119 (1980).
- 279. S. Kanemasa, J. Tanaka, H. Nagahama, and O. Tsuge, Chem. Lett., 1985, 1223.
- 280. D. S. Matteson and D. Majumdar, J. Chem. Soc., Chem. Commun., 1980, 39.
- 281. D. S. Matteson and D. Majumdar, Organometallics, 2, 230 (1983).
- 282. D. J. S. Tsai and D. S. Matteson, Tetrahedron Lett., 22, 2751 (1981).
- 283. M. V. Garad, A. Pelter, B. Singaram, and J. W. Wilson, Tetrahedron Lett., 24, 637 (1983).
- 284. W. B. Motherwell, J. Chem. Soc., Chem. Commun., 1973, 935.
- 285. J. Dunoguès, R. Calas, N. Duffaut, and J.-P. Picard, J. Organomet. Chem., **26**, C13 (1971).
- 286. S. L. Hartzell and M. W. Rathke, Tetrahedron Lett., 1976, 2737.
- 287. A. Zapata, C. Fortoul R., and C. Anuna A., Synth. Commun., **15**, 179 (1985).
- 288. T. H. Chan and M. Moreland, Tetrahedron Lett., 1978, 515.
- 289. A. Zapata and F. Ferrer G., Synth. Commun., 16, 1611 (1986).
- 290. H. Ahlbrecht and K. Pfaff, Synthesis, 1978, 897.
- 291. K. Takahashi, K. Shibasaki, K. Ogura, and H. Iida, J. Org. Chem., **48**, 3566 (1983).
- 292. A. M. van Leusen, J. Wildeman, J. Moskal, and A. W. van Hemert, Recl. Trav. Chim. Pays-Bas, **104**, 177 (1985).
- 293. A. M. van Leusen and J. Wildeman, Recl. Trav. Chim. Pays-Bas, **101**, 202 (1982).
- 294. K. S. Kyler and D. S. Watt, J. Org. Chem., **46**, 5182 (1981).
- 295. K. S. Kyler, M. A. Netzel, S. Arseniyadis, and D. S. Watt, J. Org. Chem., **48**, 383 (1983).

- 296. K. S. Kyler and D. S. Watt, J. Am. Chem. Soc., 105, 619 (1983).
- 297. K. S. Kyler, A. Bashir-Hashemi, and D. S. Watt, J. Org. Chem., **49**, 1084 (1984).
- 298. C. H. Chen, J. J. Doney, and G. A. Reynolds, J. Org. Chem., **47**, 680 (1982).
- 299. D. Seebach, Synthesis, 1969, 17.
- 300. B.-T. Grobel and D. Seebach, Synthesis, 1977, 357.
- 301. E. J. Corey, D. Seebach, and R. Freedman, J. Am. Chem. Soc., **89**, 434 (1967).
- 302. A. G. Brook, J. M. Duff, P. F. Jones, and N. R. Davis, J. Am. Chem. Soc., **89**, 431 (1967).
- 303. P. F. Jones and M. F. Lappert, J. Chem. Soc., Chem. Commun., **1972**, 526.
- 304. P. F. Jones, M. F. Lappert, and A. C. Szary, J. Chem. Soc., Perkin Trans. 1, **1973**, 2272.
- 305. F. A. Carey and A. S. Court, J. Org. Chem., **37**, 1926 (1972).
- 306. D. Seebach, M. Kolb, and B.-T. Grobel, Tetrahedron Lett., 1974, 3171.
- 307. A. P. Kozikowski and Y.-Y. Chen, J. Org. Chem., **45**, 2236 (1980).
- 308. D. Seebach, M. Kolb, and B.-T. Grobel, Chem. Ber., 106, 2277 (1973).
- 309. N. H. Anderson, Y. Yamamoto, and A. D. Denniston, Tetrahedron Lett., **1975**, 4547.
- 310. R. S. Brinkmeyer, Tetrahedron Lett., 1979, 207.
- 311. S. Danishefsky, R. McKee, and R. K. Singh, J. Org. Chem., **41**, 2934 (1976).
- 312. M. G. Saulnier and G. W. Gribble, Tetrahedron Lett., 24, 3831 (1983).
- 313. B.-T. Grobel and D. Seebach, Chem. Ber., **110**, 852 (1977).
- 314. D. Seebach, B.-T. Grobel, A. K. Beck, M. Braun, and K.-H. Geiss, Angew. Chem., Int. Ed. Engl., **11**, 443 (1972).
- 315. D. Seebach and R. Burstinghaus, Angew. Chem., Int. Ed. Engl., **14**, 57 (1975).
- 316. R. Burstinghaus and D. Seebach, Chem. Ber., **110**, 841 (1977).
- 317. M. Isobe, Y. Ichikawa, and T. Goto, Tetrahedron Lett., 22, 4287 (1981).
- 318. M. Isobe, Y. Ichikawa, Y. Funabashi, S. Mio, and T. Goto, Tetrahedron, 42, 2863 (1986).
- 319. K. Fuji, M. Ueda, K. Sumi, K. Kajiwara, E. Fujita, T. Iwashita, and I. Muira, J. Org. Chem., **50**, 657 (1985).
- 320. K. Fuji, M. Ueda, K. Sumi, and E. Fujita, J. Org. Chem., **50**, 662 (1985).
- 321. S. Hackett and T. Livinghouse, Tetrahedron Lett., 25, 3539 (1984).
- 322. K. Schank and F. Schroeder, Justus Leibigs Ann. Chem., 1977, 1676.

Errata for Paquette: ORGANIC REACTIONS, Volume 38

Chapter 1: The Peterson Olefination Reaction by David J. Ager

The following references were inadvertently omitted and should appear at the end of the reference list on page 223.

- 323. O. W. Steward and J. S. Johnson, J. Organometal. Chem., **55**, 209 (1973).
- 324. M. A. Cook, C. Eaborn, A. E. Jukes, and D. R. M. Walton, J. Organometal. Chem., **24**, 529 (1970).
- 325. I. Fleming and C. D. Floyd, J. Chem. Soc., Perkin Trans. 1, 1981, 969.
- 326. D. Seyferth, J. L. Lefferts, and R. L. Lambert, J. Organometal. Chem., **142**, 39 (1977).
- 327. T. H. Chan and I. Fleming, Synthesis, **1979**, 761.
- 328. G. Stork and E. Colvin, J. Am. Chem. Soc., 93, 2080 (1971).
- 329. G. Stork and M. E. Jung, J. Am. Chem. Soc., 96, 3682 (1974).
- 330. R. K. Boeckman and K. J. Bruza, J. Org. Chem., 44, 4781 (1979).
- 331. L. A. Paquette and Y.-K. Han, J. Am. Chem. Soc., 103, 1831 (1981).
- 332. J. J. Eisch and J. E. Galle, J. Org. Chem., 41, 2615 (1976).
- 333. A. R. Bassindale, A. G. Brook, P. Chen, and J. Lennon, J. Organometal. Chem., **94**, C21 (1975).
- 334. M. Obayashi, K. Utimoto, and H. Nozaki, Tetrahedron Lett., 1977, 1807.
- 335. M. Obayashi, K. Utimoto, and H. Nozaki, Bull. Chem. Soc. Jpn., **52**, 2646 (1979).
- 336. P. F. Hudrlik, A. M. Hudrlik, and A. K. Kulkarni, Tetrahedron Lett., **26**, 139 (1985).
- 337. G. Berti, S. Canedoli, P. Crotti, and F. Macchia, J. Chem. Soc., Perkin Trans. 1, **1984**, 1183.
- 338. R. F. Cunico, Tetrahedron Lett., 27, 4269 (1986).
- 339. F.-T. Luo and E.-i. Negishi, J. Org. Chem., 48, 5144 (1983).
- 340. H. Tomioka, T. Suzuki, K. Oshima, and H. Nozaki, Tetrahedron Lett., **23**, 3387 (1982).
- 341. Y. Kitano, T. Matsumoto, and F. Sato, J. Chem. Soc., Chem. Commun., 1986, 1323.
- 342. B. Zwanenburg, Recl. Trav. Chim. Pays-Bas, **100**, 1 (1982).
- 343. P. A. T. W. Porskamp, M. van der Leij, B. H. M. Lammerink, and B. Zwanenburg, Recl. Trav. Chim. Pays-Bas, **102**, 400 (1983).
- 344. M. van der Leij, P. A. T. W. Porskamp, B. H. M. Lammerink, and B. Zwanenburg, Tetrahedron Lett., **1978**, 811.

- 345. P. A. T. W. Porskamp, R. C. Haltiwang, and B. Zwanenburg, Tetrahedron Lett., **24**, 2035 (1983).
- 346. T. Konakahara and Y. Takagi, Tetrahedron Lett., 21, 2073 (1980).
- 347. T. Konakahara, K. Sato, and M. Matsuki, Heterocycles, 21, 490 (1984).
- 348. T. Konakahara, H. Nishigaki, A. Watanabe, and K. Sato, Heterocycles, **22**, 2765 (1984).
- 349. O. Tsuge, K. Sone, and S. Urano, Chem. Lett., 1980, 977.
- 350. O. Tsuge, K. Sone, S. Urano, and K. Matsuda, J. Org. Chem., **47**, 5171 (1982).
- 351. T. Konakahara and Y. Takagi, Heterocycles, 14, 393 (1980).
- 352. T. Konakahara and K. Sato, Bull. Chem. Soc. Jpn., 56, 1241 (1983).
- 353. K. Fuji, M. Ueda, and E. Fujita, J. Chem. Soc., Chem. Commun., **1983**, 49.
- 354. P. C. B. Page, M. B. van Niel, and P. H. Williams, J. Chem. Soc., Chem. Commun., **1985**, 742.
- 355. K. Ohkata, Y. Ohyama, Y. Watanabe, and K. Y. Akiba, Tetrahedron Lett., **25**, 4561 (1984).
- 356. I. Ruppert, V. Bastian, and R. Appel, Chem. Ber., 108, 2329 (1975).
- 357. C. H. DePuy and R. Damrauer, Organometal., 3, 362 (1984).
- 358. H. H. Schubert and P. J. Stang, J. Org. Chem., 49, 5087 (1984).
- 359. J. R. Hwu and J. M. Wetzel, J. Org. Chem., **50**, 400 (1985).
- 360. L. H. Sommer, R. E. van Strein, and F. C. Whitmore, J. Am. Chem. Soc., **71**, 3056 (1949).
- 361. A. G. Angoh, J. Chem. Soc., Chem. Commun., 1984, 534.
- 362. S. Takano, S. Otaki, and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1985, 485.
- 363. T. Gallagher and P. Magnus, Tetrahedron, **37**, 3889 (1981).
- 364. S. R. Wilson, P. A. Zucker, C.-W. Kim, and C. A. Villa, Tetrahedron Lett., **26**, 1969 (1985).
- 365. S. R. Wilson and A. Shedrinsky, J. Org. Chem., 47, 1983 (1982).
- 366. J. Mora and A. Costa, Tetrahedron Lett., **25**, 3493 (1984).
- 367. B. D. Gray and J. D. White, J. Chem. Soc., Chem. Commun., 1985, 20.
- 368. D. A. Evans, J. M. Takacs, and K. M. Hurst, J. Am. Chem. Soc., **101**, 371 (1979).
- 369. I. Matsuda, S. Murata, and Y. Izumi, Bull. Chem. Soc. Jpn., **52**, 2389 (1979).
- 370. M. Isobe, M. Kitamura, and T. Goto, J. Am. Chem. Soc., **104**, 4997 (1982).
- 371. M. Isobe, M. Kitamura, and T. Goto, Tetrahedron Lett., 1979, 3465.

- 372. M. Isobe, M. Kitamura, and T. Goto, Tetrahedron Lett., 21, 4727 (1980).
- 373. M. Isobe, Y. Funabashi, Y. Ichikawa, S. Mio, and T. Goto, Tetrahedron Lett., **25**, 2021 (1984).
- 374. M. Tsukamoto, H. Iio, and T. Tokoroyama, Tetrahedron Lett., **26**, 4471 (1985).
- 375. I. Fleming, J. Goldhill, and D. A. Perry, J. Chem. Soc., Perkin Trans. 1, **1982**, 1563.
- 376. M. Ochiai, S.-i. Tada, K. Sumi, and E. Fujita, J. Chem. Soc., Chem. Commun., **1982**, 281.
- 377. M. Ochiai, S.-i. Tada, K. Sumi, and E. Fujita, Tetrahedron Lett., **23**, 2205 (1982).
- 378. I. Fleming and N. K. Terrett, Tetrahedron Lett., 25, 5103 (1984).
- 379. I. Fleming and J. A. Langley, J. Chem. Soc., Perkin Trans. 1, **1981**, 1421.
- 380. M. Ochai, T. Ukita, and E. Fujita, Tetrahedron Lett., 24, 4025 (1983).
- 381. A. G. Brook, Acc. Chem. Res., 7, 77 (1974).
- 382. A. G. Brook and J. J. Chrusciel, Organometal., 3, 1317 (1984).
- 383. A. G. Brook and A. R. Bassindale in "Rearrangements in Ground and Excited States", vol. **2**, Academic Press, New York, pp 149ff.
- 384. S. R. Wilson, M. S. Hague, and R. N. Misra, J. Org. Chem., **47**, 747 (1982).
- 385. J. J. Eisch, J. E. Galle, A. Piotrowski, and M.-R. Tsai, J. Org. Chem., **47**, 5051 (1982).
- 386. K. J. H. Kruithof and G. W. Klumpp, Tetrahedron Lett., 23, 3101 (1982).
- 387. K. Yamamoto, T. Kimura, and Y. Tomo, Tetrahedron Lett., **26**, 4505 (1985).
- 388. S. Murai, I. Ryu, J. Iriguchi, and N. Sonoda, J. Am. Chem. Soc., **106**, 2440, (1984).
- 389. Y. Kobayashi, H. Uchiyama, H. Kanbara, and F. Sato, J. Am. Chem. Soc., **107**, 5541 (1985).
- 390. R. West, R. Lowe, H. F. Stewart, and A. Wright, J. Am. Chem. Soc., **93**, 282 (1971).
- 391. A. Wright and R. West, J. Am. Chem. Soc., **96**, 3214 (1974).
- 392. A. Wright and R. West, J. Am. Chem. Soc., **96**, 3222 (1974).
- 393. A. Wright and R. West, J. Am. Chem. Soc., **96**, 3227 (1974).
- 394. A. Wright, D. Ling, P. Boudjouk, and R. West, J. Am. Chem. Soc., **94**, 4784 (1972).
- 395. P. Boudjouk and R. West, J. Am. Chem. Soc., 93, 5901 (1971).
- 396. H. A. Firgo and W. P. Weber, Organometal, **1**, 649 (1982).

- 397. J. E. Baldwin, A. E. Derome, and P. D. Riordan, Tetrahedron, **39**, 2989 (1983).
- 398. J. E. Baldwin, J. C. Bottaro, P. D. Riordan, and A. E. Derome, J. Chem. Soc., Chem. Commun., **1982**, 942.
- 399. F. Sato, Y. Tanaka, and M. Sato, J. Chem. Soc., Chem. Commun., **1983**, 165.
- 400. S. R. Wilson and G. M. Georgiadis, J. Org. Chem., 48, 4143 (1983).
- 401. A. G. Brook and D. G. Anderson, Can. J. Chem., 46, 2115 (1968).
- 402. R. D. Miller and R. Hassig, Tetrahedron Lett., 25, 5351 (1984).
- 403. S. Lane, S. J. Quick, and R. J. K. Taylor, Tetrahedron Lett., **25**, 1039 (1984).
- 404. Y. Kita, H. Yasuda, O. Tamura, F. Itoh, and Y. Tamura, Tetrahedron Lett., **25**, 4681 (1984).
- 405. D. J. Hart and Y.-M. Tsai, Tetrahedron Lett., 24, 4387 (1983).
- 406. D. N. Harpp, T. Aida, and T. H. Chan, Tetrahedron Lett., **26**, 1795 (1985).
- 407. B. F. Bonini, E. Foresti, R. Leardini, G. Maccagnani, and G. Mazzanti, Tetrahedron Lett., **25**, 445 (1984).
- 408. K. Sachdev and H. S. Sachdev, Tetrahedron Lett., 1976, 4223.
- 409. H. J. Reich and S. K. Shah, J. Org. Chem., 42, 1773 (1977).
- 410. J. D. White, M.-c. Khang, and B. G. Sheldon, Tetrahedron Lett., **24**, 4539 (1983).
- 411. F. Ogura, T. Otsubo, and N. Ohira, Synthesis, 1983, 1007.
- 412. H. Nishiyama, T. Kitajima, A. Yamamoto, and K. Itoh, J. Chem. Soc., Chem. Commun., **1982**, 1232.
- 413. M. Julia, Pure Appl. Chem., **57**, 763 (1985).
- 414. G. Wittig and G. Geissler, Justus Leibigs Ann. Chem., 580, 44 (1953).
- 415. G. Wittig and U. Schollkopf, Chem. Ber., 87, 1318 (1954).
- 416. M. Schlosser, Top. Stereochem., 5, 1 (1970).
- 417. A. W. Johnson, "Ylid Chemistry", Academic Press, New York, 1966.
- 418. L. Horner, H. Hoffman, and H. G. Wippel, Chem. Ber., **91**, 61 (1958).
- 419. W. S. Wadsworth, Org. React., 25, 73 (1977).
- 420. G. Cainelli, F. Bertini, P. Grasselli, and G. Zubiani, Tetrahedron Lett., **1967**, 1581.
- 421. T. Kauffmann, H. Ahlers, R. Joußen, R. Kriegsmann, A. Vahrenhorst, and A. Woltermann, Tetrahedron Lett., **1978**, 4399.
- 422. M. C. Henry and G. Wittig, J. Am. Chem. Soc., 82, 563 (1960).
- 423. S. Trippett and M. A. Walker, J. Chem. Soc. (C), **1971**, 1114.
- 424. G. Cainelli, G. D. Bello, and G. Zubiaini, Tetrahedron Lett., 1966, 4315.

- 425. A. Pelter, D. Buss, and E. Colcough, J. Chem. Soc., Chem. Commun. 1987, 297.
- 426. D. D. Davis and C. E. Gray, J. Org. Chem., 35, 1303 (1970).
- 427. F. Bertini, P. Grasselli, G. Zubiani, and G. Cainelli, Tetrahedron, **26**, 1281 (1970).
- 428. M. M. Kreevoy and F. R. Kowitt, J. Am. Chem. Soc., 82, 739 (1960).
- 429. K. Ichikawa, K. Nishimura, and S. Takayama, J. Org. Chem., **30**, 1593 (1965).
- 430. H. J. Reich and F. Chow, J. Chem. Soc., Chem. Commun., 1975, 790.
- 431. H. J. Tilhard, H. Ahlers, and T. Kauffmann, Tetrahedron Lett., **21**, 2803 (1980).
- 432. A. Osuka, Y. Mori, H. Shimizu, and H. Suzuki, Tetrahedron Lett., **24**, 2599 (1983).
- 433. T. Kauffmann, Angew. Chem., Int. Ed. Engl., 21, 410 (1982).
- 434. H. Hashimoto, M. Hida, and S. Miyano, J. Organometal. Chem., **10**, 518 (1967).
- 435. R. L. Sowerby and R. M. Coates, J. Am. Chem. Soc., **94**, 4758 (1972).
- 436. M. Chaykovsky and E. J. Corey, J. Org. Chem., 28, 254 (1963).
- 437. C. Walling and L. Bolbyky, J. Org. Chem., 28, 256 (1963).
- 438. E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 84, 866 (1962).
- 439. E. J. Corey and T. Durst, J. Am. Chem. Soc., **90**, 5548 (1968).
- 440. E. J. Corey and T. Durst, J. Am. Chem. Soc., **90**, 5553 (1968).
- 441. P. J. Kocienski, Chem. Ind. (London), 1981, 548.
- 442. E. Murayama, T. Kikuchi, K. Sasaki, N. Sootome, and T. Sato, Chem. Lett., **1984**, 1897.
- 442a T. Kauffmann, R. Kriegsmann, and A. Woltermann, Angew. Chem., Int. . Ed. Engl., **16**, 862 (1977).
- 443. T. Sato, T. Kikuchi, N. Sootome, and E. Murayama, Tetrahedron Lett., **26**, 2205 (1985).
- 444. T. Kauffmann, R. Kriegsmann, B. Altepeter, and F. Steinseifer, Chem. Ber., **115**, 1810 (1982).
- 445. T. Sato, H. Matsuoka, T. Igarashi, and E. Muruyama, Tetrahedron Lett., **27**, 4339 (1986).
- 445a D. Seebach, I. Willert, A. K. Beck, and B.-T. Grobel, Helv. Chim. Acta, . **61**, 2510 (1978).
- 446. T. Kauffmann, R. Kreigsmann, and A. Hamsen, Chem. Ber., **115**, 1818 (1982).
- 447. M. Schlosser and B. Schaub, J. Am. Chem. Soc., **104**, 5821 (1982).
- 448. E. Vedejs, G. P. Meier, and K. A. J. Snoble, J. Am. Chem. Soc., 103,

- 2823 (1981).
- 449. H. J. Bestmann, Pure Appl. Chem., **52**, 771 (1980).
- 450. A. B. Reitz, M. S. Mutter, and B. E. Maryanoff, J. Am. Chem. Soc., **106**, 1873 (1984).
- 451. B. E. Maryanoff, A. B. Reitz, and B. A. Duhl-Emswiler, Tetrahedron Lett., **24**, 2477 (1983).
- 452. B. E. Maryanoff, A. B. Reitz, and B. A. Duhl-Emswiler, J. Am. Chem. Soc., **107**, 217 (1985).
- 453. R. Esmond, B. Fraser-Reid, and B. B. Jarvis, J. Org. Chem., **47**, 3358 (1982).
- 454. F. A. Carey and W. C. Frank, J. Org. Chem., 47, 3548 (1982).
- 455. D. J. Ager and S. J. Mole, unpublished results.
- 456. A. Hosomi, H. Shoji, and H. Sakurai, Chem. Lett., **1985**, 1049.
- 457. T. Sato, T. Abe, and I. Kuwajima, Tetrahedron Lett., 1978, 259.
- 458. I. Fleming and N. K. Terrett, J. Organometal. Chem., **264**, 99 (1984).
- 459. I. Fleming and N. K. Terrett, Tetrahedron Lett., **24**, 4153 (1983).
- 460. I. Fleming and N. K. Terrett, Tetrahedron Lett., 24, 4151 (1983).
- 461. I. Cerny, V. Powzar, P. Drasar, F. Turecek, and M. Havel, Coll. Czech. Chem. Commun., **51**, 128 (1986).
- 462. P. Albaugh-Robertson and J. A. Katzenellenbogen, J. Org. Chem., **48**, 5288 (1983).
- 463. R. Gompper and W. Reiser, Tetrahedron Lett., 1976, 1263.
- 464. D. T. Witiak, R. J. Patch, S. J. Enna, and Y. K. Fung, J. Med. Chem., **29**, 1 (1986).
- 465. D. J. Hart and Y.-M. Tsai, J. Am. Chem. Soc., 106, 8209 (1984).